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List of symbols

Greek Symbols
[α] the proper torsional ability (ex.306)
α the angle of the torsion of the polarization plane by the sugar-in-water solutions

(ex.306)
α the linear expansion coe�cient of solids K−1

α the thermoelectric coe�cient (ex.207) V/K
cosϕ the cosine of the losses angle (ex. 202)
∆areg uncertainty of the slope factor of linear regression
∆breg uncertainty of the b factor of linear regression
η the luminous e�ciency (ex.307)
η the transformer e�ciency in [%] (ex.202)
κ ratio of speci�c heat at constant pressure to speci�c heat at constant volume
λ wavelength of light or sound m, cm, nm,�. . .
µ molar mass kg/mol
ω circular frequency rd/s
Φ the luminous �ux (ex.307)
ϕ0 initial phase rd or ◦

ΦC the total luminous �ux (ex.307)
ρ density g/cm3 kg/m3

σ The standard deviation of any measurement
σs The standard deviation of the arithmetic mean
ε the deviation of the measurement value from the arithmetic mean
ε the electromotive force (EMF) (ex.201) V
φ(x− xs) the Gauss function of the distribution of errors
ϑ the angle of light de�ection passing thru the di�raction grating (ex.303)
Roman Symbols
A amplitude
al the position al of the lower scratch of plate ex.301
au the position al of the upper scratch of plate ex.301
areg the slope factor of linear regression
breg the b factor of linear regression
C the capacitance of a capacitor (ex.201) F
c concentration of the sugar-in-water solution (ex.306)
D steering torque pendulum springs kg m2 s−2

d actual thickness of plate ex.301
d the di�raction grating constant (ex.303)
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dt di�erential of time
E Young's modulus GPa
E the illuminance (ex.307)
EF the Fermi energy of electron levels (ex.207) eV
En, Em energies of electron on nth and mth orbital (ex.304)
EF0 the Fermi energy at 0 K (ex.207) eV
f frequency Hz
f the focal of the lens or set of lenses (ex.301)
h Planck constant (ex. 205, 304 - see also B.1) J s
h apparent thickness of plate ex.301
i a current in the circuit (ex.201) A
i current A
i the distance from the lens to image (ex.302)
i the temporary current value (ex.202) A
I0 moment of inertia respect to the axis of symmetry kg m2

IS the luminous intensity (ex.307)
jA,jB the density of the thermocouple current (ex.207) A/m2

K the transformer's transmission (ex.202)
k wave number cm−1

l length m
lr the reduced length of pendulum (ex.102) m
M mass, for example disk mass ex.104 kg
m mass kg
n amount of mole
n the refractive index (ex.301,305)
o the distance from the lens to object (ex.302)
P The probability of obtaining the result in the range (x1, x2)
P power W
P the electrical power (ex.307)
p pressure PaTr atm
Q an electric charge (ex.201) C
Q the Joule-Lenz heat (ex.207) J
R a resistance of the resistor (ex.201) Ω
R gas constant J mol−1 K−1

R radius, for example disk radius ex.104 m
R resistance Ω
r distance from axis of rotation, radius of object m
T period [1/s] or temperature in K
t time s
Tf a periof of the physical pendulum (ex.102) s
Tm a period of the mathematical pendulum (ex.102) s
U a potential di�erence - voltage (ex.201) V
U voltage V
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u the temporary voltage (ex.202) V
V volume m3 cm3

v the speed of sound, vehicle, bullet, any object e.t.c. m/s
Vk the potential di�erence (ex.207) V
WA,WB the output work of the electrons (ex.207) J or eV



1. Introduction

This pdf document is prepared as a summary of the most important information on
physics laboratory exercises in English language. Is the result of translating selected
fragments of the script written by Stanisªaw Szuba [1, 2] and Krzysztof �apsa [3]. Also
consist of translation the notes available on the website of the Faculty of Technical
Physics at Poznan University of Technology.

In order to fully prepare for the exercises, familiarize yourself with the keywords and
learn from the supplementary literature [4�7].

This document will be systematically developed and made available to students
performing exercises in physics laboratory in English.

Good luck
P. G.

http://phys.put.poznan.pl/pracowniafizyczna/


2. Analysis of the measurements results

1. Physical measurements

Experimental determination of physical quantity is usually a complex activity in
which three stages can be distinguished:

• making direct measurements,
• calculation of the searched value on the basis of a known functional relationship
between this quantity and the quantities measured directly and

• assessment of the error that is assigned to the determined value.

Only a few quantities can be measured directly with the appropriate instruments.
These include basic quantities: time, length, mass and current. The measurement con-
sists in comparing a given physical quantity with a standard of this quantity taken as a
unit. A number of other sizes can also be read directly on the scale of the instrument;
these measurements are also included in the direct, although the indicated value is the
result of a di�erent size measurement and appropriate calculation. For example, a (ana-
log) voltmeter is a device that measures current directly, and the voltage is calculated
from Ohm's law U = Ri (R is a known internal resistance) and we read this result on
the scale of the device. Measured values are called simple quantities.

In order to determine the composite quantity, we must measure several simple quan-
tities and then apply the appropriate formula combining the simple quantities with the
searched value.

The measurement of a given physical quantity can be a complex or direct measure-
ment, depending on the instruments used. As an example, let's consider the measure-
ment of electric power. If we have an ammeter and a voltmeter, then we measure two
simple quantities - current (i) and voltage (U), and then calculate the power from the
relationship P = Ui. In this situation, P is a composite quantity. Otherwise, we can
use a watt meter that will indicate the power of the current directly on the scale of the
instrument - then P is a simple quantity.

We save the results of direct measurements as well as the results of calculations in
tables. When planning a table, we need to predict which quantities will be measured
directly and which will be calculated. It is incorrect to enter in the table the results
obtained by simple calculations in memory, bypassing the primary readings. For example,
for measuring the period of oscillation of the pendulum, we foresee three headings: 1
- number of vibrations (n), 2 - time of n vibrations (t), 3 - period of vibrations (T ),
and not only the last column in which we would enter the quotient calculated in the
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memory total time and number of vibrations. First of all, the table must re�ect direct
measurements. Similarly, save each measurement result repeated many times, not just
the average value.

Table 2.1. Sample measurement table

Frequency Position 1 Position 2 Position 3 x2 − x1 x3 − x2
f [Hz] x1 [cm] x2 [cm] x3 [cm] [cm] [cm]

3505 21.4 35.8 47.6 14.4 11.8
5220 18.0 25.2 33.7 7.2 8.5

2. Calculations and charts

General rules

The measured simple quantities allow to determine, depending on the nature of the
measurement, universal constants (e.g. elementary charge, Planck constant), material
constants (e.g. modulus of elasticity, refractive index) or determine the functional
dependence of one physical quantity on the other (e.g. conductivity from temperature,
lighting from a distance).

Diagrams

In the case of calculating constants, both universal and material, the second stage of
the experiment consists in inserting the results of direct measurements into the correct
formula and making calculations. The �nal result is the nominated number expressed
in units of the determined physical quantity.

When the goal of the experiment is to �nd a relationship between two physical
quantities, then the result is usually presented in graphical form. Measurements then
consist in a deliberate change of one quantity, e.g. x, and �nding corresponding values
of the other quantity, e.g. y. The graphical image of the relationship is the graph of
the function y = f(x). Preparation of the correct chart requires compliance with the
following rules,

1. The abscissa (horizontal) represents the independent variable and the ordinate axis
represents the dependent variable. Near the axis, enter the names of the appropriate
knowledge and unit. The length of both axes should be approximately the same - 10
- 20 cm. Then the plot area will be close to square. The longer the axis, the more
details the graph contains.

2. The scale is applied to the coordinate axis in such a way that the range measures
he had almost the entire length of the axis. At the beginning of the axis or near it,
we place scale divisions corresponding to the smallest measured values - they do not
have to be zero values. The largest measured values should be near the end of the
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axis. The scale divisions should be chosen so that any value of the measured value
can be easily found on the axis. This requirement will be met when we apply the
rule:

1 cm axis = (1 or 2 or 5) · 10n units (2.1)

where n is an integer. After determining the scale division, the length of the axis
can be changed change compared to originally planned.

3. The tick labels of the axis are created by adding values for some main ticks. Along the
axis there should be 3-6 values described, spaced at regular intervals. It is incorrect
to mark the measurement values on the axes.

Figure 2.1. An example of a chart in linear coordinates

4. Mark the measuring points with crosses, circles or other geometrical �gures, but not
with dots that are hardly visible. When we place several curves on one sheet, we
mark the points belonging to each of them in a di�erent way. The measuring point
itself should be located in the center of the mark. The number of points that should
be used when preparing the chart must not be too small - at least 10-15 points. If
the curve shows a maximum, minimum or in�ection point, then near these places,
the measuring points should be concentrated, because this allows the curve to run
correctly.

5. The curve re�ecting the relationship should be smooth, i.e. without sharp bends and
local extremes. Usually it does not run through all measuring points, but in such a
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way that the number of points lying on both sides is approximately equal and their
random distribution.

EXAMPLE

We draw the resonance curve of the vibrating circuit, i.e. the dependence of the AC current

on the frequency (Fig. 2.1). Frequency range: 0.906 <ω <0.975 MHz. We assume values for

the beginning of the ω = 0.9 MHz system, for the end - omega = 0.98 MHz, axis length - 10

cm. Then the 1 cm scale corresponds to 0.008 MHz. The closest value satisfying the condition

(eq. 2.1) is 0.01 MHz / cm (1 · 10−2). After taking this value, the length of the abscissa is

8 cm. Current range 0 < i < 0.8 mA We assume the value for the beginning of the system

i = 0, for the end of the axis - i = 0.8 mA, the length of the axis - 8 cm.Then the scale with

a length of 1 cm corresponds to the current by i = 0.1 mA. axes the chart covers the entire

surface and is most readable.

The axes constants in Fig. 2.1 are linear, i.e. the distances between points on the axis
are directly proportional to the increases in the size represented by this axis. Graphs on
a linear scale are used when we graphically present a linear relationship or an unknown
non-linear relationship with a range of changes within one row.

Physical processes, including those we encounter in the laboratory, are often de-
scribed by nonlinear functions, and the purpose of the measurement can be to check
the nature of the function or to determine a certain quantity occurring in a nonlinear
relationship. In these cases, we usually use charts with non-linear scales.

For example, in a uniformly accelerated motion graph of the path (S) In function of
time (1) is a parabola described by the function s = v0t+1/2at2. To check whether the
tested motion is really uniformly accelerated, we prepare a graph in the coordinates:
y = s, x = t2. If the graph is a straight line, it means that the equation has been met,
and therefore the uniform accelerated motion is con�rmed. A graph that deviates from
the straight line indicates that the tra�c is of a di�erent type,

As a second example, we consider the dependence of conductivity (σ) on (T ) for
semiconductors

σ = σ0e
− E

kBT (2.2)

In order to check whether the measurement points obtained meet the equation (2.2),
we draw a graph in coordinates in which the above equation would be a straight line.
You can see that these coordinates are:

y = ln(σ/σ0), x = 1/T . (2.3)

After logging in the equation (2.2) and performing substitutions (2.3), we get the
relationship

y = − E

kBT
x , (2.4)

whose graph is a straight line with a slope factor of −E/2kB (Fig. 2.2).
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Figure 2.2. An example of a chart in nonlinear
coordinates

If the experimental plot in this coordinate system is a straight line, it con�rms that
the conductivity changes with the temperature according to equation (2.2). Measure-
ment of the slope coe�cient on the graph also allows to determine additional quantities
in the described case, e.g. E (when k is known).

It should be noted that the slope coe�cient is not a tangent of the geometrically
measured slope, but in general the nominative value is derived from the ratio of coor-
dinates increments ∆y/∆x. It can easily be seen that the slope factor in Figure 2.2 is
�1430 K.

The description of the chart is often supplemented by the scale of the basic size
(with uneven divisions) plotted on the auxiliary axes (σ and T in Fig. 2.2). When
preparing data for the chart in nonlinear coordinates, remember to provide in the table
for the calculated functions of the measured values, e.g. lnσ, 1/T .

Linear regression
Suppose we measure two dependent amounts of x, y. We place the measuring points

determined by appropriate pairs of values x1, y1, ....xi, yi on the chart and we want
to draw a continuous line, which is to show the real relationship between y and x in
the whole range of variability x. Because we know that each of the measuring points
is a�ected by a certain error, there is no point in the lines exactly through the points
obtained. The general form of the function y(x) describing the phenomenon is most
commonly known. For example, in a horizontal projection from y0, the body height for
di�erent coordinates x is determined by the function:

y = y0 −
g

2v20
x2 , (2.5)

The graph of the above dependence is a parabola, but its exact shape becomes
inde�nite until the parameters y0, v0 and g are known.
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In practice, we usually know the shape of the theoretical curve, but we do not know
the parameters of the function. Theoretical function can be adapted to the measurement
data using the least squares method.

Let's denote the value of the theoretical function at xi by y(xi), and the value
measured at this point by yi. The deviation of the measured value from the theoretical
value for each measurement is

y(xi)− yi , (2.6)

Gauss's postulate says that the �t is best when the sum of the squares of deviations
at all points takes the smallest value, which can be expressed in the form of the equation:

n∑
i−1

[y(xi)− yi]
2 = minimum . (2.7)

The use of the least squares method is easy only for linear functions - in this case the
method is called linear regression. Condition (2.7) applied to the linear function

y = aregx+ breg . (2.8)

allows, after appropriate transformations, to �nd parameters characterizing a given
straight line: the slope factor (areg) and the intersection point of the straight line with
the y (breg) axis. These parameters can be calculated from the following equations:

areg =
n
∑

xiyi −
∑

xi

∑
yi

n
∑

x2
i − (

∑
xi)

2
. (2.9)

breg =

∑
x2
i

∑
yi −

∑
xi

∑
xiyi

n
∑

x2
i − (

∑
xi)

2
. (2.10)

where n is the total number of pairs (x, y), and the values of the indicator and range
are [1...n]. Knowing the parameters a and b, you can draw the right straight line and �nd
the value of y for any x based on the equation (2.8). When using linear regression, pay
attention to whether the measuring points are randomly distributed relative to a straight
line, because another distribution of points indicates that the function y(x) is not linear.

EXAMPLE

Determination of straight line parameters based on the following mea-

surements: The corresponding sums in equations (2.9) and (2.10) are:

x 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

y 1.0 2.0 2.2 2.5 4.0 5.0 4.5 5.5

∑
x = 18,

∑
y = 26.7,

∑
xy = 73.55, (

∑
x)2 = 324,

∑
x2 = 51.

The parameters of the straight line have the values: a = 1.28, b = 0.45.
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Linear regression can be used not only for explicitly linearly dependent quantities,
but also for each pair of quantities described by a function that can be represented in
a linear form by the use of appropriate substitutions (see formula 2.2 followed by the
description).

An important advantage of using a linear regression to increase the accuracy of the
parameters calculated in this way in relation to the values obtained directly from the
graph.

Computer calculations

Most often they are repeated calculations, the arithmetic mean, standard deviation
and linear regression. Manually their performance or even using a calculator requires a
lot of time, and does not teach new skills. To perform these calculations quickly, take
advantage of a computer program StatS.exe now named asMeasurement statistics in PL
and EN language version, specially designed for physics lab. The program is an addition
to this script and is available on the website http://www.phys.put.poznan.pl. To get
the required results, you should only enter data into the table, and the corresponding
calculations will be done automatically.

In the case of single-size measurements, only one column is �lled in, and the results
window contains the arithmetic mean, standard deviations and variances (Fig. 2.3).
The basic measure of error of the mean is the standard deviation of the mean, and
other expressions used in appropriate cases. The drawing also contains a histogram,
i.e. a bar graph showing the number of measurements obtained (vertical axis) in a
series of value ranges (horizontal axis). The histogram illustrates the distribution of
measurements, which should take the shape of a Gaussian curve for a su�ciently large
series of measurements.

Figure 2.4 shows the data window of the pair of sizes and the window of the sizes
characterizing the linear regression - slope factor, intersection with the axis Y , errors
(uncertainties) of both these quantities, and also the correlation coe�cient. The �gure
also has a graph in the form of points (x, y) and a straight line with parameters calculated
from linear regression. This graph also provides visual information if the measurement
points are randomly distributed relative to a straight line (only if regression can be
used).

A very useful function of the program is data conversion, which consists in performing
operations on all data of the selected column. For example, for the X column, we
calculate the inverse (1/x), and for the Y column, logarithms (ln y).

The charts in the appropriate boxes are only a simpli�ed illustration of the results
and should not be used in this form to present the results developed.

https://phys-old.put.poznan.pl/szuba/states/index.php
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Figure 2.3. �Measurement statistics� program - data and results pane for one physical quantity
in x column
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Figure 2.4. �Measurement statistics� program - data boxes and results regarding a pair of
physical quantities
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3. Error evaluation

Sources of Errors

The measurements taken in the laboratory never correspond exactly to the actual
value of the measured value. They are subject to a greater or lesser error. The mea-
surement error is the di�erence between the measured value and the actual value. The
true value may be smaller or larger than the measured value.

If we denote the measured value by x, the true value by x0, and the reading accuracy
by ∆x, then on the basis of the above remarks we can say that the true value lies in
the range between x −∆x and x + ∆x. The measurement result should be written as
x0 = x±∆x.

EXAMPLE

A thermometer having 1 ◦C graduations indicates T = 24 ◦C. The measurement error is 1 ◦C.

The actual temperature is in the range (23 ÷ 25 ◦C). Temperature measurement result T =

(24 ± 1) ◦C.

Systematic errors

Systematic errors result from the inaccuracy of instruments, from the use of the
wrong measurement method or from external factors. Measuring instruments are con-
structed in such a way that the results of correctly carried out measurements do not
di�er from the actual value more than by the value of the smallest division of the scale,
which is why we call reading accuracy.

In the case of electric switches, accuracy may be determined by the class of the
instrument, i.e. a number indicating the ratio of the systematic error to the meter
range. For example, a class 0.5 meter with a 100-scale scale is half the scale smaller.

The development of a proper measurement method is not easy from taking into
account the various phenomena accompanying the measured phenomenon, as well as
the impact of measurement on the measured quantity. For example, measuring the run
time of competitors at 100 m by the judges at the �nish and starting the stoppers aloud
with the starter's shot gives a lower value than the actual time needed for the acoustic
wave to reach the judges. Not taking this delay into account causes a systematic error
of about 0.3 s

Using the wrong method of measurement may cause a change in the measured value.
For example, by inserting a mercury thermometer into a small vessel with liquid, we
will not measure the proper liquid temperature, but the temperature determined as a
result of heat exchange between the thermometer and the liquid. In this case, a proper
measuring method would be to use a thermocouple, which practically does not take heat
from the tested body due to the low value of its own heat capacity.

Incorrect measurement method also includes observing the instruments indications



2. Analysis of the measurements results 15

from the wrong angle, which leads to the so-called parallax error, and the use of approx-
imate formulas to calculate complex quantities.

Measurement method errors are most often di�cult to quantify. In practice, the
systematic error is usually the accuracy of the instrument.

Random Errors

Repeating the measurement of a simple size many times with a high accuracy device
(small systematic error), we get a di�erent result each time, and the di�erences between
the readings far outweigh the systematic error. The measured values are subject to
random errors, whose source is the properties of the tested object (phenomenon), device
or the person conducting the measurement.

By measuring, for example, the diameter of a wire with a micrometer, we obtain
di�erent results due to the change in diameter in di�erent places and due to the
di�erent screw pressure. A special role is played by accidental errors in subjective
measurements, such as comparing lighting, assessing maximum sound intensity or power
loss. Accidental errors cannot be lost, you can reduce their impact on the �nal result
and calculate their value. The methods for calculating random errors are described
below.

Fatal errors

They are the result of mistakes that occurred during measurements (e.g. reading in
centimeters instead of millimeters Erroneous errors exceed the remaining errors several
times, so it is easy to notice them. The result burdened with a fat error is repeated or
rejected.

Recognizing the type of error and repeating measurements

When starting the measurements, �rst of all we need to �nd out what kind of error
occurs when measuring each of the simple quantities. In order to determine the type
of error, a test series should be made: measuring the value three times. The results
of this series will allow us to determine the type of error as well as the further way of
measurement.

If all measurements in the trial series have the same value, we conclude that the
measurement is dominated by systematic error. We take any of the measurements as
the result, and the accuracy of the instrument as the error.

If the measurements in the trial series are di�erent, a random error dominates the
measurement. Then, increase the measurement series to at least 10, take the arithmetic
mean as the measurement result, and the standard deviation of the arithmetic mean as
the error (see formula 3.9).
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Basic concepts of random error theory

Real value, arithmetic average

According to Gaussian theory, the measurement result should be taken as the value
for which the sum of squares of deviations of individual measurements is the smallest.
This value is the arithmetic average. If we make n measurements and denote the result
of each of them by xi (i = 1, 2, 3 ... n), we de�ne the arithmetic mean as follows:

xi =
1

n

n∑
i=1

xi . (3.1)

Theoretical considerations show that for a su�ciently large number of measurements,
the value of the arithmetic mean does not di�er much from the actual value, therefore
the error of the individual measurement is the deviation of the measurement value from
the arithmetic mean

εi = xi − xs . (3.2)

Error distribution

Analyzing the results of measurements of the same magnitude, we come to the con-
clusion that their greatest concentration is close to the average value. The number of
results deviating from the mean decreases as the deviation increases. The distribution
of errors is subject to statistical laws - it is described by the Gauss function expressed
by equation (3.3) and presented graphically in Fig. 3.1.

φ(x− xs) =
1

σ
√
2π

e
−(x−xs)

2

2σ2 . (3.3)

Figure 3.1. Gaussian curve of random error dis-
tribution

In the above formula, φ(x − xs)
means the probability density of the
measurement of the value x or an error
of x − xs, σ is a constant character-
izing the measurement accuracy. The
probability of obtaining the result, the
range (x1, x2) is determined by the �eld
between the x axis and the φ(x − xs)
curve and the abscissa x1 and x2 (Fig.
3.1). This �eld can be calculated by
integrating the distribution curves:

P =

x2∫
x1

φ(x− xs)dx . (3.4)

The calculation of the integral from
−σ to +σ leads to the conclusion that
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68.3% of all errors fall within this
range. The value of σ, which is abscissa of the Gaussian curve in�ection point, is
called measurement standard deviation.

Similarly, we can calculate that errors less than |2σ| and |3σ| are encumbered with
95.4% and 99.7% of all measurements, respectively. From the presented values it follows
that in practice the maximum error of measurement should be equal to the tripled
value of the standard deviation.

Calculation of errors of any measurement

The standard deviation of any measurement σ with a series consisting of a large
number of measurements of equal accuracy is calculated using the formula:

σ =

√√√√ 1

n− 1

n∑
i−1

ε2i . (3.5)

where n is the number of measurements and ε - deviation of the individual pore value
from the arithmetic mean. The true value lies in the range (xi − σ, xi + σ ) where x
is the value of any measurement, For numerical calculations, it is convenient to use the
above formula transformed into the form:

σ =

√∑
x2
i −

(
∑

xi)2

n

n− 1
. (3.6)

Calculators from di�erent companies have an internal program, activated by the
appropriate button, which allows to calculate the standard deviation after entering all
the data xj This button is most often marked with σn−1 or Sn−1. The average error is
de�ned as the arithmetic mean of the absolute values of all individual deviations.

The average error is de�ned as the arithmetic mean of the absolute values of all
individual deviations

εp =
1

n

n∑
i−1

|εi| . (3.7)

The measurement error of a large series is smaller than the standard deviation; in
theory it can be shown that

σp = 0.8σ . (3.8)

Calculation of arithmetic mean errors

The arithmetic mean of many measurements of a given quantity does not coincide
completely with the real value, however the range around the mean value in which we
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expect to �nd the real value is much smaller than the error of a single measurement.
The standard deviation of the arithmetic mean is given by the formula:

σs =

√√√√ 1

n(n− 1)

n∑
i−1

ε2i . (3.9)

The true value lies in the range (xs − σs, xs + σs), where x is the arithmetic mean
of the measurements. The interpretation of both types of deviations σ and σs is shown
on the numerical axis in Figure 3.2.

Figure 3.2. Illustration of the standard deviation of any measurement (σ) (above) and the
standard deviation of the arithmetic mean (σs) (below) on the number line; black points

indicate the value of measurements, x0, xs, xi - true value, average, any measurement.

Comparing expressions (3.9) and (3.5), we conclude that the relationship:

σs =
σ√
n
. (3.10)

The use of the above relationship is particularly common, we use a calculator with the
σ calculation program.

We calculate the average error of the arithmetic mean on the basis of the expression:

εps =
1

n
√
n

n∑
i−1

|εi| . (3.11)

The calculation of averages as well as standard deviations is quite labor-intensive,
which is why it is worth using the StatS.exe computer program (see chapter 2) to
facilitate these and other calculations.
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Figure 3.3. Dependence of the arithmetic mean
error on the number of measurements

Comparing formulas (3.9) and
(3.11) with formulas (3.5) and (3.7),
we see that the arithmetic mean
errors are n1/2 times smaller than
the errors of individual measurements
and decrease with the increase in
the number of measurements. The
dependence of the error on the number
of measurements is illustrated in the
graph in Figure 3.3. As the graph
shows, the number of measurements
has a decisive impact on the error of
the arithmetic mean in the range of
small values (n < 10). Increasing the
number of measurements after above
10-15 improves the accuracy of the
result Number of measurements only
slightly, hence in laboratory practice
for determining the arithmetic average
we take no more than 10 measure-
ments.

Errors of small series of measurements

In practice, we often make only a few measurements of a given size (n <5). After
applying to such a series of formulas (3.5) and (3.9) we get understated values of the
standard deviation σ′ and σ′

s. To �nd the σ values corresponding to a large series of mea-
surements, multiply the deviations obtained by the so-called Student-Fisher coe�cients
tn

σ = σ′tn . (3.12)

The coe�cient values depend on the number of measurements n and the type of
error being calculated. Table 3.1 contains the values of the most-used Student-Fisher
coe�cients for the number of measurements from 2 to 10 and for the standard deviation
with a con�dence level of 68.3 %.

Table 2.2. Student-Fisher coe�cients for the standard deviation of the arithmetic mean (con-
�dence level = 0.68)

n 2 3 4 5 6 7 8 9 10

tn 1.84 1.32 1.20 1.14 1.11 1.09 1.08 1.07 1.06



2. Analysis of the measurements results 20

Complex measurement errors

The errors discussed so far concerned measurements of quantities measured directly,
such as: length, temperature or current. However, in laboratory practice, we most
often determine a certain complex quantity based on the measurement of several simple
quantities. The error of each of the measured quantities makes some contribution to
the error of the result, with the errors of individual simple quantities can partially
compensate or add up. Since we cannot assess the sign of errors, we choose the least
favorable case, i.e. one in which each partial error increases the error of the result.

The calculation of the composite quantity error is based on a di�erential calculus.
We treat measured quantities as function arguments, and their errors as di�erentials.
Of course, this approach is justi�ed when the errors are much smaller than the value
itself.

Suppose that the value z is a function of the variables x1, x2, ... that is, z =
f(x1, x2, ...). The complete di�erential of this function is the expression:

dz =
∂f

∂x1

dx1 +
∂f

∂x2

dx2 + ... . (3.13)

which determines the increase in size due to the increase of arguments by dx1, dx2, ...
. Fractional expressions are partial derivatives of a function relative to the corresponding
variable. Changing the di�erence to equation in equation (3.13), we get the formula
de�ning the maximum error of the complex value:

∆z = | ∂f
∂x1

∆x1|+ | ∂f
∂x2

∆x2|+ ... . (3.14)

By using absolute values all words are positive, i.e. all contributions of partial errors
add up and the calculated error is really maximum. The method of calculating errors
using equation (3.14) is called full di�erential method. When the composite quantity
has a product form, e.g.

z = cxm
1 x

n
2 ... . (3.15)

where c, m, n are the constants. It is more convenient to use the logarithmic di�erential
method. Logging the equation (3.15) leads to the form:

ln z = ln c+m lnx1 + n lnx2... , (3.16)

for which the total di�erential and then the relative error are calculated very simply:

∆z = (|0|+ |m∆x1

x1

|+ |n∆x2

x2

|+ ...)z , (3.17)

Equation (3.17) contains only measurement values and their errors, and does not
contain derivatives, so using this method is more convenient than the methods of full
di�erential. Therefore, before calculating the composite error, it is worth checking
whether the function is a product.
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As direct measurement error for equations (3.14) or (3.17) we take either systematic
error (instrument accuracy) or random error (standard deviation of the mean), depend-
ing on which of them was recognized as dominant.

EXAMPLE 1

We determine the moment of inertia of the cylinder with mass m and radius R with respect
to the axis parallel to the axis of the cylinder and distant from it by d. The results of direct
measurements and their errors are as follows: m = (55.3 ± 0.1) g, R = (3, 52 ± 0.01) cm,
d = (20± 0.1) cm. We calculate the moment of inertia using Steiner's law

I = m(
R2

2
+ d2) , (3.18)

The equation has no product form, so we must use the formula (3.14). First, we calculate the
appropriate partial derivatives:

∂I

∂m
=

R2

2
+ d2 ;

∂I

∂R
= mR ;

∂I

∂d
= 2md . (3.19)

then insert them into the formula (3.14) and obtain

∆I = |(R
2

2
+ d2)∆m|+ |mR∆R|+ |2md∆d)| . (3.20)

Numeric value of error ∆I = 263.7 g/cm2, and the measurement result should be saved in the

�nal form I = (22460± 260) g/cm2.

EXAMPLE 2

We determine the Young's modulus by means of bar de�ection based on the relationship

E =
l3

12πSr4
F . (3.21)

The quantities measured directly are i, S, r and F . The initial equation has a product form, so
we will use the logarithmic di�erential method, i.e. the formula (3.17) adapted to the current
quantities:

∆E =

(
3
∆l

l
+

∆S

S
+ 4

∆r

r
+

∆F

F

)
E . (3.22)

Practical notes on calculating errors

1. We calculate errors of measured quantities directly according to the recognition type
of error (see page 10 and section 3).

2. When calculating the composite quantity measured once, the maximum error we
calculate by the total or logarithmic di�erential method.

3. We also use errors calculated according to point 1 as a direct measurement error
average in expressions for the composite error (∆x in equations 3.14 and 3.17).
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4. If the composite quantity is measured many times, then for the measurement result
we take the arithmetic mean of these measurements.

5. Before repeating the measurements (n > 2) again, the composite quantity should be
calculate the maximum error of this quantity according to point 2 and check whether
the di�erence between the two measurements is greater than the maximum error.
If it is not, discontinue further measurements and take the maximum error as the
measure of the complex quantity error. If the di�erence is larger, it is advisable to
increase the number of measurements, take the arithmetic mean as the result and
the deviation as the error standard average.

6. When a series consists of a small number of measurements, we must take into account
Student-Fisher coe�cients.

4. Presentation of results

We have full information about the determined physical quantity when we know its
value and the error it is burdened with. We must remember that the methods presented
above do not allow for a precise determination of the deviation of the measurement
result from the actual value. For example, the standard deviation speci�es the range
around the mean of the measurement, and the probability of �nding the actual value in
this range is 68 %.

Therefore, giving the result as well as an error in the form of a multi-digit number
is pointless - the �rst two signi�cant digits have a physical sense. The calculated error
and result values must be rounded. The error value usually has two signi�cant digits1,
sometimes one, never more. In the conditions of the physical lab we will use rounding
procedure shown in Table 4.1.

When rounding the result, we use general rules, i.e. numbers from 1 to 4 are rounded
down, and numbers from 5 to 9 are rounded up. Table 4.2 gives some examples of
rounding results and errors,

The absolute error is the di�erence between the true value and the value obtained
as a result of measurements.

The ratio of absolute error to (average) measurement value is called relative error

εw =
x− xavg

xavg

. (4.1)

The �nal result must contain the rounded values of the measured quantity and error
and units. As the culmination of the work, it should be presented in enhanced form,
e.g. in capital letters, in a frame or in another color, e.g.

q = (69.37± 0.02) · 10−9
C

We often express a relative error in percentage. To calculate the percentage error, it
is su�cient to multiply the expression (4.1) by 100%. Providing a relative error allows

1 Signi�cant digits are obtained by rejecting the leading and trailing zeros. The position of the
decimal point does not matter. Not to be confused with decimal digits!
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Table 2.3. Procedure for rounding o� errors and results

Action Example 1 Example 2

1. We calculate the error value with high accuracy ∆x1 = 1932 ∆x1 = 0.05186
2. We round the error to two signi�cant digits ∆x1 = 1900 ∆x1 = 0.052
3. We make a trial rounding of an error up to one
signi�cant digit

∆x2 = 2000 ∆x1 = 0.06

4. Has Stage 3 resulted in a value change greater than
10%; we're checking inequality (∆x2 − ∆x1)/∆x1 >
0.1

no yes

5. Yes - we leave 2 signi�cant digits. ∆x2 = 2000 ∆x1 = 0.052
No - we leave 1 signi�cant digit.
6. We calculate the measurement result by at least one
place decimal further than the place where the error
was rounded

x=26231 x =0.3794

7. We round to the decimal place to which the error
was determined

x=26000 x =0.379

8. Final record x=26000±2000 x=0.379±0.052

Table 2.4. Examples of rounding o� errors and results

Before rounding After rounding

r = (225.173± 0.191) cm r = (225.2± 0.2) cm
t = (7.5752± 0.0234) s t = (7.575± 0.023) s
i = (93.311± 0.092) · 10−3 A i = (93.3± 0.1) · 10−3 A
C = (0.2266± 0.00282) µF C = (0.227± 0.003) µF
q = (69.4659± 0.0357) · 10−9 C q = (69.466± 0.036) · 10−9 C
q = (69.3659± 0.0187) · 10−9 C q = (69.37± 0.02) · 10−9 C
G = (4567893± 32331) N G = (4568000± 33000) N

you to quickly evaluate the result. In the conditions of the physical laboratory, we
consider satisfactory results with a relative error εw < 0.1.

Figure 4.1. Error rectangle design

A full graphical representation of
the result must include errors in both
quantities forming a functional rela-
tionship. The error of the measuring
point on the chart is marked by sur-
rounding it an error rectangle (Figure
4.1) whose sides are equal to twice the
value of the coordinate error. In princi-
ple, the curve should be followed after
applying errors. If the measurements
are carried out correctly, the smooth
curve passes through at least 70% of
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the error rectangles and the number of measuring points lying on both sides of the
curve is approximately the same.

It is often necessary to compare two results obtained by di�erent methods or / and
compare with the value given in the tables. We denote such results and their maximum
errors by:

A1 ±∆A1 and A2 ±∆A2 . (4.2)

From the property of the maximum error it follows that the real value of Ao should be
simultaneously in two ranges

< A1 −∆A1 >, < (A1 +∆A1 > . (4.3)

< A2 −∆A2 >, < (A2 +∆A2 > . (4.4)

We consider the results to be consistent when both compartments partially overlap
or are at least tangent. The condition of interruption of the intervals is o�set by the
following inequality

|A1 − A2| ≤ |∆A1|+ |∆A2| . (4.5)

If A1, is the result of experiment, and A2 the value from the tables, then most often the
error ∆A2 is much smaller than ∆A1 and approximately ∆A2 = 0. In these conditions
the measurement result should satisfy the inequality:

|A1 − A2| ≤ |∆A1| . (4.6)

If the inequalities (4.5) or (4.6) are met, then we say that the compared results are
consistent.

Other reference materials: H. Szydªowski, Pracownia �zyczna, Warszawa, PWN
2003 [7].
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5. Length measuring instruments

Caliper

The caliper is a device used to measure small lengths - up to several centimeters -
with an accuracy of 0.1 or 0.05 mm. It consists essentially of a metal bar C (Fig. 5.1)
ended with a jaw A and a movable slide D. The �xed part is marked with a millimeter
scale, and on the slider there is a vernier with 10 or 20 divisions. To measure the external
dimension of a body, place it between the A and B jaws and press them lightly. To
measure internal dimensions, we use jaws E and F , which we insert into the measured
hole and spread it apart until the stop. In order to measure the depth of the hole, rest
the bar C on the upper edge, and insert the end of the slider G until it rests on the base
of the hole.

Figure 5.1. Vernier caliper; A, B - jaws for measuring external dimensions, C - �xed part
with the main scale, D - sliding slider with a vernier scale, E, F - jaws for measuring internal

dimensions, G - depth measuring tip

The principle of reading the vernier is shown in Fig. 5.2, which shows a fragment of
the main scale and the entire vernier scale consisting generally of N divisions (in Figure
N = 5). The reference point for the scale is the zero division of the vernier. The value
of the smallest division of the dn vernier is selected in relation to the smallest division
of the ds scale that the entire length of the vernier consisting of N divisions includes
(N − 1) of the scale divisions, i.e.

Ndn = (N − 1)ds, (5.1)
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From the above equation we �nd that the di�erence in the value of the plots (ds−dn = ∆

∆ =
ds
N
. (5.2)

This quantity is the accuracy of reading with a vernier scale. In any measurement, the
zero vernier line is between the scale marks. At the same time, one of the vernier lines
coincides with a certain line on the scale.

Figure 5.2. Vernier caliper; A, B - jaws for measuring external dimensions, C - �xed part
with the main scale, D - sliding slider with a vernier scale, E, F - jaws for measuring internal

dimensions, G - depth measuring tip

There are two steps to reading with a vernier:

• we �nd the value of the dash on the scale closest (but towards the smaller ones value)
of a zero vernier line,

• we add the value of the product of accuracy and the number of the vernier line
extending the scale.

For the caliper in �g. 5.1: ds = 1 mm, N = 10, ∆ = 0.1 mm, the measured value is
7.3 mm. Vernier is used to measure distances and angles. In practice, vernier with the
parameters presented in Table 3.1 is most often used.

Table 3.1. Parameters of the most commonly used vernier

ds N ∆

1 mm 10 0.1 mm
1 mm 20 0.05 mm
30' 30 1'
15' 30 30�

Micrometer

When it is necessary to measure with an accuracy of 0.01 mm, then we use a mi-
crometer, formerly known as a micrometric screw. The micrometer (Fig. 53) consists
of the C stationary part with the S1 scale, and the W drum with the S2 scale. On
the upper part of the S scale, millimeters are marked, and the lower scale divisions are
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halfway between the upper divisions. Typically, one full revolution of the bobbin case
corresponds to 0.5 mm of the B tip; the S2 scale has a range from 0 to 50.

The reading consists in adding the indication on the drum to the largest value of the
uncovered scale of the �xed scale S1. For example, if the bottom bar to the right of the
7mm division is visible and the bobbin gauge is 35, the reading would be 7.85mm.

Excessive pressure of the tip of the screw on the measuring object may deform it or
damage the thread of the screw. In both cases the measurement will be false. In order
to ensure constant pressure, the bolt is turned only by the D knob, which is connected
to the other part through a clutch that disables the rotation of the bolt with excessive
pressure.

Figure 5.3. Micrometer, A, B - tips between
which the measured object is placed, C - han-
dle, D clutch knob, S1 - �xed scale, S2 - mov-

able scale, W - rotated cylinder

Figure 5.4. Micrometric sensor

Before starting to measure, check the zero indication after bringing the A and B
terminals into contact. If the micrometer does not show zero then read the shift of the
zero reading from the beginning of the scale. The value of this shift must be included
in the measurements, adding it to the reading or subtracting it from it, depending on
the direction of the shift.

Micrometric sensor

The micrometer sensor measures length changes with an accuracy of 0.01 mm. The
end of the slider (Fig. 5.4) is pressed by a delicate spring against the surface of the
measured object. The displacement of the surface is transferred through the slider and
the system of gears to two pointers, the larger of which performs one revolution when
the slider is moved by 1 mm, and the smaller - when the slider is moved by 10 mm. The
movable scale enables convenient setting of the zero position.
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6. Laboratory scales

Construction and operation
Balance is a device used to determine body mass or weight. In spring and tor-

sion scales use the elastic properties of bodies. In particular, the proportionality of
deformation to the acting force. When the force is the weight of the body, then the
strain (elongation or twist angle) is proportional to mass as well. Determining the mass
is possible when we know the value of the acceleration due to gravity, which is not
constant but changes with the distance from the center of the Earth. This disadvantage
does not occur in beam scales.

The method of measurement with the use of a beam balance consists in comparing
the tested mass with a reference mass in the form of weights. The measurement result
is independent of the force of gravity.

The structure of the balance is shown in Fig. 6.1, where the main elements are
marked: a beam, pans, pointer, supporting prisms and an arresting device. The beam
and pan are supported by prisms made of very hard material (often agate), which
minimizes the impact of friction and allows for precise de�nition of the arm length. The
pointer, rigidly connected to the beam, de�nes its position relative to the horizontal.
The condition for proper operation of the scale is horizontal positioning of the base,
which is achieved by adjusting it with two front legs, and controlling it with a spirit
level or plumb line.

Figure 6.1. Laboratory scales; A - arrest
mechanism, B - beam, W - hint

Figure 6.2. Forces in unbalanced weight

The utility value of a balance is determined by two parameters: accuracy and sen-
sitivity. We take the value of the smallest weight as the accuracy of the balance, and
sensitivity is the ratio of the pointer de�ection angle to the excess weight which caused
this de�ection:

c =
α

∆m
. (6.1)

An equivalent term is often used in which the angle is replaced by the number of scale
divisions - a

c =
a

∆m
. (6.2)
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Let us consider an isosceles balance whose arms are unequally loaded - one pan has the
mass m, and the other one m + ∆m (Fig. 6.2). The beam tilts from its horizontal
position by α. Note that the equilibrium state, despite unequal loads, can only exist
when the support point of the O beam is above the center of gravity. For the system to
be in equilibrium, the resultant moment of force about the point O must be zero. The
moment of force acting on the right arm is (m + ∆m)gr cosα, we take it as positive.
The two remaining moments try to rotate the beam in the opposite direction, so they
have a negative value: −mgr cosα −mBgd sinα, where d is the distance of the axis of
rotation from the center of gravity, and mB - the mass of the beam. The equilibrium
condition takes the form of the equation:

(m+∆m)gr cosα−mgr cosα−mBgd sinα = 0. (6.3)

Dividing the above equation by cosα and making simple transformations, we �nd the
tangent of the de�ection angle

tanα =
r∆m

dmB

. (6.4)

When the de�ections are small, we can assume that formula (6.4) also determines the
de�ection angle itself (because in this case tanα ≈ α) and use it to determine the
sensitivity based on the dependence (6.2). By doing the substitution, we get:

c =
r

dmB

. (6.5)

The sensitivity of the balance is therefore proportional to the length of the arms
and inversely proportional to the weight of the beam and the distance of the point of
support from the center of gravity. In modern scales, fairly short beams made of light
aluminum alloys are used. Thanks to this structure, the scales are convenient to use
(small dimensions) and su�ciently sensitive (favorable ratio of the beam length to its
weight).

If the beam was supported at the center of gravity (d = 0), then - as equation (6.5)
shows - its sensitivity would be in�nitely high. Such a weight would be useless as any
di�erence in mass would cause the beam to tilt into position vertical!

Each scale can only be loaded up to a certain limit, above which the structural
elements are deformed and the measurement results become erroneous.

Each scale includes a set of weights with values in the sequence: 1, 2, 2, 5. The
smallest weight is usually 10 mg. Analytical balances placed in special housings and
having air damping of �uctuations have greater accuracy. Their accuracy ranges from
0.1 mg to 0.01 mg. 0.01 mg.

Weighting

There are several rules that you must follow in order to use a scale and to obtain
correct results.

All manipulations on the weighing pan, i.e. adding weighing scales, placing the
weighed body, etc., should be performed on the scales. The principle of arresting comes
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down to removing the beam and trays from the prisms and supporting them on special
immobilizing stands. The A knob is used for detecting and must be turned with a gentle
movement.

The weighing cabinet should be opened only when necessary, thus avoiding the harm-
ful e�ects of air currents and temperature changes. For applying weighing scales, it is
enough to open the cabinet wall halfway. The application and removal of weights should
be performed with the use of special forceps, which are the balance accessories.

We start the weighing process with leveling the balance, checking pans for cleanliness
and setting the zero position of the pointer. When the center of �uctuation of the
unloaded weight does not coincide with the center of the scale, then the center of gravity
of one of the weighing panes is shifted by appropriate tightening of the horizontal screws
at the ends or in the middle of the beam.

Place the tested body on the left pan and put the weights on the right pan. Then
we �nd the smallest weight that causes overweight, then replace it with a half weight
and add smaller weights until we get another overweight. Proceed in this way until the
smallest weight from the set is used.

In order to achieve an accuracy greater than the value of the smallest weight, we
use the interpolation method in which we take into account the position of the pointer.
This method requires a precise zero position. Suppose that after reset, the pointer is
skewed to the right p1, to the left - l1, and the second to the right - p2. The center of
�uctuation is calculated according to the formula:

S0 =
p1+p2

2
+ l1

2
=

p1 + p2 + 2l1
4

. (6.6)

If the weight scale has zero in the middle, then the left tilt is negative, and the right
tilt is positive. In a similar way, we determine the center of S− �uctuations with the
smallest underweight. The di�erence S0 − S− is proportional to the di�erence between
the weight of the weights and the weight of the body

x ∝ S0 − S−. (6.7)

Based on equations (6.6) and (6.7), we �nd the addition to the mass of weights giving
the result with an under�ow:

x =
S0 − S−

S+ − S−
∆m. (6.8)

As in formula (6.6), the S values have di�erent signs, depending on their position in
relation to the zero scale value. The value of x is rounded to one signi�cant place. The
�nal result of mass measurement using the interpolation method is calculated from the
formula

m = m− +
S0 − S−

S+ − S−
∆m. (6.9)

where: m− is the weight of the least underweight and ∆m is the weight of the overweight
result. The above method allows to determine the mass value with an accuracy that
exceeds the mass of the smallest weight by one order.
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In automatic analytical balances, weights are put on by turning an appropriate knob,
and in semi-automatic balances, larger weights are placed manually, smaller weights -
automatically. Locations determining values less than 10 mg are determined from the
de�ection of the pointer read with a precision optical system.

7. Ultrathermostat

In many physical measurements it is necessary to keep the body or medium at
a temperature di�erent from the ambient temperature. For automatic temperature
control, we often use an ultrathermostat - a device in which heat is supplied to the
system when its temperature is lower than required. The ultrathermostat contains the
following (see �gure 7.1):

• a tank with a thermostated liquid,
• a controlled heater, an additional heater,
• cooler,
• temperature sensor (contact thermometer, thermistor, diode, etc.),
• control system,
• mixing and forcing pump.

The liquid reservoir may be connected to an external device that is allowed to �ow
by a pump driven by an electric motor. The heater control system receives informa-
tion about the current temperature from the sensor and turns on the heater when the
temperature is lower than the required temperature, or turns the heater o� when the
temperature has reached the required value. The basic feature of the sensor must be a
strong dependence of its properties (e.g. length, electrical resistance) on temperature.

One of the temperature sensors used is a contact thermometer, the structure of which
is shown and the principle of operation is explained in Fig. 7. The lower part of the
capillary serves as a thermometer, while the upper part is �ared and houses the P , screw
with the K nut on it, which in turn is connected to the D wire. When the screw is
rotated, the nut makes a translational movement up or down, thus changing the position
of the end of the wire relative to the mercury level. When the end of the wire touches
the mercury, an electrical circuit is completed between terminals Z1 and Z2.

The upper end of the screw is provided with a small magnet that can be rotated
with a larger external magnet. By turning the magnet, we set the cap to a certain
temperature value, at which the mercury column is at the level of the wire end, which
closes the circuit.

The Z1, Z2 terminals are connected to a relay that turns on the heater when the
thermometer is open, and turns the heater o� when the thermometer circuit closes.
The heater is turned o� and on at slightly di�erent temperature values - this di�erence
is called the control insensitivity and should be as small as possible. If you want to
reach the required temperature faster, switch on the auxiliary heater. Since it does not
respond to the contact thermometer, it must be switched o� manually before the desired
temperature is reached.
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Figure 7.1. Thermostat diagram; S - control system, C - tem-
perature sensor, G - heater, W - thermostated �uid, Ch - cooler

Figure 7.2. Contact thermometer; D - contact wire, K - nut
moved along the threaded rod P through its rotation caused
by manual rotation of the external magnets N − S, Z1, Z2 -

terminals connecting with the heating circuit relay

In order to lower the temperature of the thermostating liquid, lower the cap (contact
thermometer indicator) to the desired value - the heater is thus turned o� - and we
pass a stream of cold tap water through a spiral cooler immersed in the liquid. Of
course, the lowest temperature that we can achieve in this way is the temperature of the
cooling water. Correct control of the temperature slightly above the room temperature
is achieved by simultaneously switching on the automatic heating system and circulation
of cold tap water through the cooler.

8. Potentiometer and autotransformer

The basic power sources are: AC mains, galvanic cells and batteries. AC voltage
varies with time according to the formula: U = U0 sin(2πft), where frequency f = 50
Hz and amplitude U0 = 324 V. A more useful parameter is the RMS voltage Us, which
is smaller than the maximum by factor 1.41 and equals 230 V.

Galvanic cells and batteries are direct current sources. The electromotive force of a
single cell of a lead battery is 2.2 V and the EMF of di�erent cell types is from 1.0 V to
2.5 V.

In a physics laboratory, it is often necessary to regulate the voltage in a smooth or
jumpy manner. The simplest device for this purpose is a potentiometer, a diagram of
which is shown in Fig. 8.1. To the ends of the resistor R0 we connect the voltage source
U0, as a result of which the current i = U/R0 �ows through the resistor. The drop



3. Basic measuring instruments 33

in potential across the part of the resistor whose resistance is R is the product of the
current and this resistance, so:

U =
R

R0

U0. (8.1)

By changing the position of the slider (in the picture - contact ending with an arrow),
we can get U voltage in the range from 0 to U0.

Apart from potentiometers with a smooth slider movement, there are also poten-
tiometers with step regulation; they are called voltage dividers.

Potentiometers can be used to adjust DC and AC voltage. Their disadvantage is
that they draw current, sometimes much greater than the current of the actual receiver.

We often use an autotransformer to regulate AC voltage. The structure of this
device is shown in Fig. 8.2. A single-layer winding is wound on the ring core, to the
ends of which we connect an AC source. The reduced voltage is collected from the
autotransformer by means of a slider in the same way as in a potentiometer. The
winding resistance is an inductive resistance and only occurs for alternating current.
Turning on the DC voltage would cause a large current to �ow and burn the winding.

Figure 8.1. Potentiometer Figure 8.2. Autotransformer

9. Adjustable resistors

The slide resistors have a resistance wire winding wound around a ceramic core.
The ends of the windings are brought to the terminals located on the outer side of the
housing. Also outside there is a handle and a clamp for the slider, i.e. a contact sliding
along the winding. When we connect the A and C terminals to the electric circuit (Fig.
9.1), the current will �ow through the winding part between the A terminal and the
slider, and then through the slider rail, the resistance of which is very small, to the C
terminal. Of course, after switching on the B and C terminals, the winding resistance
from the B point to the slider is "active".

Figure 9.1 also shows a schematic of a resistor having two windings, which we can
use either separately or both together. Terminating both ends of the resistance winding
with terminals allows the use of slide resistors as potentiometers.

A decade resistor consists of a plurality of wire resistors connected in such a way
that any value can be selected, from the smallest single resistor to the sum of all. The
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Figure 9.1. Slide resistors: single (left) and double (right)

Figure 9.2. Decade resistor

values in the following decades di�er by a factor of 10. The connection method in a
3-decade resistor is shown in Fig. 9.2. The resistance of a single decade is selected
with the P switch, rotated by a knob with a value indicator from 0 to 9 (or 10 - in
some constructions). Total resistance is the sum of all decades. The external circuit is
connected to the A and B terminals at both ends of the resistor.

Figure 9.3. Plug resistor

A plug resistor is a system of series connected wire resistors, each of which can be
disconnected from the circuit by shorting its ends with a special stopper/plug. (Fig.
9.2). All wire resistors are connected in series on a common copper bar, the resistance
of which is very low. Between the ends of the individual resistors, the rail has gaps in
the form of conical holes closed with matching metal plugs.
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When the plug is in the hole, it connects a suitable resistor and the resistance of the
section (eg. A−B in Fig. 9.2) is equal to zero. When the plug is removed, the current
must �ow through a suitable resistor (eg R2 in Fig. 9.2). The value of the resistance
applied in this way is marked on the plate next to the opening. In order for the plugs to
introduce additional resistance, they should be pressed in �rmly. Resistors are generally
sorted by decades. We calculate all the resistance turned on by summing up all the
values corresponding to the removed plugs. There are auxiliary openings next to the
rail break, which do not constitute a break in the electric circuit of the rail and are used
to insert free plugs.

10. Switches

For the convenience of measurements, switches are used, with which we can eas-
ily close or open the circuit, change the direction of the current, and also change the
components of the circuit.

The structure of typical 2-position switches is shown in Fig. 10.1. and their appli-
cation to change the direction of the current - in Fig. 10.2.

Figure 10.1. 2-position switches: a) 4-point,
b) 6-point and c) 8-point; thick lines show
internal connections of points for one item,

dashed lines - for another Figure 10.2. Change the direction of the cur-
rent with switches

11. Electric meters

Magnetoelectric meters

The basic part of the meter (Fig. 11.1) is a frame, made of coils of thin copper wire,
and a magnet. The frame is mounted on an axle in bearings and can rotate in the slot.
In order to increase the magnetic induction, a stationary core is placed inside the frame,
which further focuses the induction lines, so that the induction distribution in the slot
is almost radial.

The measured current �ows to the coil through spiral springs, in which, after twisting,
a spring force moment (MS) is generated, proportional to the coil angle φ. This property
is expressed by the equation:

MS = −kφ. (11.1)
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W polu magnetycznym o indukcji B na ramk¦ dziaªa moment siªy elektrodynamicznej

Me = IBSn. (11.2)

gdzie: I � nat¦»enie pr¡du, S - powierzchnia przekroju ramki, n - liczba zwojów ramki.

Figure 11.1. Basic elements of a magnetoelec-
tric meter - N , S - poles of a permanent mag-
net, C - magnetic core (stationary), R - frame

with wound winding

Both MS and Me act in the opposite way, which causes the frame tilt to become
�xed when MS − Me = 0. From the momentum equilibrium condition it follows that
the frame de�ection angle is proportional to the current intensity, i.e.

I = Aφ. (11.3)

From equation (11.3) it follows that the scale of the magnetoelectric meter is linear.

Electrodynamic meters

The principle of construction of electrodynamic meters is similar to the principle of
construction of magnetoelectric meters described above. The di�erence is replacing the
permanent magnet with an electromagnet. The magnetic induction B produced by the
electromagnet is proportional to the current strength I1 �owing through its winding

B = k1I1. (11.4)

In this situation, the moment of the electrodynamic force is proportional to both the
coil current I2 and the electromagnet current:

Me = k′
1I1I2. (11.5)

Similarly, the product of the two currents has a proportional de�ection angle. When
the same current �ows through the electromagnet and the coil (I1 = I2 = I), then the
de�ection is not proportional to the square of the current intensity

φ ∝ I2. (11.6)

Thus, the scale of the electrodynamic gauge is non-linear - the graduations become
thinner as the de�ection increases.
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Ammeter range change

The meters described above are used to measure the current intensity. Due to the
scope, they are divided into ammeters, milliammeters, microammeters and galvanome-
ters. The latter are the most sensitive meters - they are used to measure currents of
10−6 − 10−11 A.

Placing the ammeter in the circuit should not change the value of the �owing current,
so the resistance of the coils (internal resistance) should be very small.

For each meter there is a speci�c maximum current which, when exceeded, causes
the emission of heat in the measuring coil, leading to winding damage. The measuring
range of the meter is related to the maximum current.

The measured current may exceed the maximum value many times (let's denote it
by Im), if a suitable resistor is connected parallel to the terminals of the ammeter, the
so-called shunt (�g. 11.2). Let's calculate what shunt we need to use to increase the
current range n times, i.e. that I = nIm. On the basis of Kirchho�'s Second Law, we

Figure 11.2. Shunting the ammeter
Figure 11.3. Internal resistance of the volt-

meter

�nd the proportion
Ra

Rb

=
Ib
Im

, (11.7)

where Ra is the internal resistance of the ammeter, Rb is the resistance of the shunt.
According to Kirchho�'s law I Ib = nIm − Im = Im(n− 1). Taking into account the

higher relation in formula (11.8), we can calculate the shunt resistance.

Rb =
Ra

n− 1
. (11.8)

Thus, in order to increase the range n-fold, a shunt with a resistance (n−1) times smaller
than the internal resistance of the ammeter should be used. In multi-range meters,
the shunts are built inside and they are switched on by means of multi-position switches.

Voltmeter

We can adapt any current measuring device to the voltage measurement by attaching
an appropriate high resistance in series to it. Suppose that the maximum current of
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the ammeter is still Im and we want to get a volt of measure in the range Um. For this
purpose, we need to add a resistance Rw in series to the ammeter (Fig. 11.3) that at
the voltage Um the current �owing is equal to Im

IM =
Um

Rw +Ra

. (11.9)

where we calculate the resistance of the voltmeter

Rw =
Um

Im
−Ra. (11.10)

The current �owing in the voltmeter branch, which we turn on in parallel with the
source or other circuit element, should be as low as possible. We achieve this by using
a sensitive microammeter combined with high resistance.

Electronic meters

A relatively new group of devices are electronic meters, in which the basic operation is
voltage measurement by comparing it with the reference voltage. The internal resistance
of these devices is very high (reaching 1011 ohms), which makes them extremely widely
used. In many types of instruments, the result is given in a digital form, which makes
reading easier and increases its accuracy.

12. The use of a computer in measurements

Introduction

The properties of computers, including personal computers, allowed them to be
widely used to measure various physical quantities. Particularly useful are properties
such as the speed of measurement, the ease of repeated repetition, storage and processing
of the measured data.

Computer is a digital device, ie it performs operations on quantized quantities -
assuming only speci�c values that may di�er by a multiple of a certain constant. The
opposite of a quantum quantity is a continuous quantity, also called an analog quantity,
which can take any value, and the di�erence between the di�erent values can be as
small as you like.

EXAMPLE
An integer is a digital quantity. The range of integers from 0 to 10 contains only 11 values,

and the smallest di�erence between them is 1. The real number is continuous. Within the

same range [0.10] there are an in�nite number of values, e.g. 3.1415927 and 3.1415928, which

can be anywhere close to each other.

In a computer, as well as in other digital devices, the digital quantity is represented
by a series of voltage pulses, which can only take two values: 0 V and 5 V. From these
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pulses an integer is made in such a way that 0 V is assigned the value 0, and for the 5V
pulse - the value 2n, where the n exponent represents the position of a given pulse in
the sequence. Creating a digital value using eight pulses is shown in Fig. 12.1.

Figure 12.1. Creating a digital value from a series of square pulses; each pulse is assigned the
value i cdot2n (i = 0 for 0 V, i = 1 for 5 V, n - pulse position. The total value represented in

the �gure is 183 (in decimal) or 10110111 (binary)

In order to use a computer for measurement purposes, we need to provide a digital
signal to it, while the measured physical quantities are continuous quantities. Adapting
various physical quantities to digital form requires two transformations:

• conversion of a given quantity into electric voltage,
• converting voltage (analog) to digital value using the so-called analog-to-digital con-
verter.

The analog-to-digital converter, apart from its essential function, also has a time
counting function.

Computer measuring set

The Science Workshop measuring system is used in the Physical Laboratory of the
Pozna« University of Technology. The system consists of three main components which
process the information sequentially as shown in the diagram below.

Two types of sensors are used - analog and digital. The analog sensor produces
a voltage proportional to the physical quantity. For example, a temperature sensor
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produces a voltage proportional to temperature - at 0◦C it generates 0 V; when the
temperature is 10◦C, the voltage is 0.1 V, and at 100◦C it is -1 V. The analog voltage
from the sensor is converted by the interface into a digital signal which is in turn passed
to the computer.

The digital sensor produces a di�erent type of signal. It produces only two voltage
values - 5 V and 0 V. An example of such a sensor is the so-called the photo frame is
presented schematically in Fig. 12.2. One of the gate's arms has a light source, and
the other - a detector that generates a voltage of 5 V under the in�uence of lighting.
Covering the beam causes the signal to drop to 0 V.

A photo gate can be used to measure the transit time of an object or the time interval
between the passes of two objects. The timing accuracy is 0.0001 s so 0.1 ms.

Figure 12.2. Photogate

The interface is a device that is connected
to the sensor on one side and to the computer
on the other. The front face of the interface
is visible in �gure 12.3 as a dark element at
the top of the drawing. On the front panel
there are sockets for connecting digital sensors,
marked 1 and 2, and sockets for analog sensors
A, B, C. Before starting measurements, we
must attach a sensor appropriate to the mea-
surement to the interface. In addition to the
physical connection, it is necessary to "inform"
about this program by indicating which sensor
has been connected and to which input (chan-
nel). This is done by pressing the mouse but-
ton when the cursor points to the sensor plug,
dragging the cursor to the appropriate interface
socket.

Measure handler

Performing a measurement with the use of a computer requires appropriate software,
which enables e.g. starting and ending the measurement, determining the necessary pa-
rameters, making calculations or presenting the results. The user communicates with
the computer by means of buttons, selection lists and data entry windows. The com-
munication elements are adapted to the actual situation of the measurement process.

Figure 12.3 shows the settings window after starting the program. In addition to the
sensor plugs and sockets already mentioned, there is a set of possible ways of presenting
the measurement results. It is also possible to call up the calculator and notebook on
the screen. In the upper left corner there are buttons for controlling the measurement
process - �Zapis� - Record, �Podgl¡d� - Preview and �Stop� - Stop:
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Figure 12.3. Settings window

• Clicking on �Zapis� - Record starts recording the measurements, which are simulta-
neously displayed on the screen and saved in the memory.

• Clicking on �Podgl¡d� - Preview performs the same actions, except for saving to
memory - starting another measurement causes the loss of previous data.

• The �Stop� - Stop button is used to stop recording measurements.

After the desired measurements have been taken, they can be presented in various
ways. When the result of the measurement is a single value or a series of slowly changing
values, then it makes sense to show the results in digital or analog form - just as if we
were using a digital or dial gauge.

When the result of the measurement is a series of values that vary over time, it is
more convenient to present them in the form of a table or graph. You can create a table
or chart window in two ways:

• from the settings window (�g. 12.3) - grabbing the table or graph icon with the
mouse and dragging it to the selected slot,

• from the main menu - by selecting �Wy±wietl� - View and then �Nowa tabela� - New
table or �Nowy wykres� - New chart from the drop-down list.
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Figure 12.4. Settings window

An example of a chart window is shown in �g. 12.4. The main part of the window
contains the actual graph and the statistics �eld. In addition, there are content control
buttons:

• ��ródªo danych� - Data source - allows you to de�ne or change the channel from
which the data is to be downloaded and the type of data from the selected channel.
For example, you can select digital channel 1 (pl. �kanaª cyfrowy 1�) and digital
channel 2 (pl. �kanaª cyfrowy 2�) after selecting a channel �Poªo»enie� - Position,
�Pr¦dko±¢� - Speed and �Przyspieszenie� - Acceleration. More than one type of data
can be selected; then the window will contain more graphs or columns table,

• �Dane w pami¦ci� - Data in memory - allows you to download data previously mea-
sured and stored in memory.

• �Import danych� - Data import - concerns downloading data saved in a di�erent
format (by another program).

• �Statystyka� - Statistics - opens and closes the statistics �eld in the right part of the
window, one by one.
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• �Kursor� - Cursor - makes a cross that moves with the movement the mouse and
entering the coordinates at the cursor position.

• �Lupa� - Magni�er - magni�es a fragment of the chart.
• �Autoskalowanie� - Autoscale - adjusts the chart coordinate range to the range mea-
sured quantities.

• �Wygl¡d� - Appearance - allows you to set graph parameters, such as mesh, connect-
ing points.

• �Dodaj� - Add - allows you to add the next chart with the current one.

The content of the statistics �eld is de�ned after clicking the �Opcje statystyki� -
Statistics Options button. Figure 12.4 shows the number of measurements, minimum
and maximum values in this �eld. Further possible statistical data are mean values and
standard deviations. A separate group includes: function �t, derivative, integral and
histogram.

Function �tting consists in �nding the parameters of the function y(x) best suited to
the measurement data. For example, matching a linear function is �nding the parameters
a1 and a2 of the function y = a1 + a2x. After selecting �Dopasowanie krzywej� - Curve
�t and then �f. liniowa� - linear function, the statistics �eld shows the form of the
function from the previous sentence and the values of the parameters a1 and a2. The
markings remain the same, regardless of the variable names that are currently being
measured. For example, when examining uniformly accelerated motion, we have the
function v = vo + at. In this case, the statistic results have the following meanings:
x = t, y = 0, a1 = v0, a2 = a.

From the data in the table or in the chart, we can select only a certain range and
enclose it inside the rectangle circled with the mouse that appears as a dimmed area.
All calculations in the statistics �eld refer to the selected range. Not selecting is the
same as selecting all data.
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13. Determination of the speed of sound in the air by the phase
shift method

Introduction

The sound propagates in a mechanical wave and occurs only in the elastic medium.
If a certain element of the medium in which the particles are connected, we stimulate
vibrations, the energy of vibrations of this element will be transmitted to neighbouring
elements and will cause them to vibrate.

The vibrations propagating in the center are called a wave. In the wave motion,
it can be noticed that the medium does not follow the propagating wave but vibrate
around its equilibrium position. If the direction of vibration and wave is parallel, then
the wave is called longitudinal, while when the vibrations of particles are perpendicular
to the direction of wave propagation, the wave is called transverse.

The nature of the wave propagating in the medium depends on its elastic properties.
If elastic forces arise as a result of shifting the layers of the medium, striving to restore
the layer shifted to the equilibrium position, then transverse and longitudinal waves may
be formed in the medium. Most often this happens in solids. However, if there is no
elastic force between the displaced layers, only longitudinal waves are propagated. This
happens in liquids and gases.

Harmonic motion is the most common oscillatory motion in which the y-variation
changes at time t according to the equation:

y = A sin(ωt+ ϕ0), (13.1)

where: A- amplitude, ω - circular frequency, ϕ0 - initial phase.

The expression (ωt + ϕ0) is the phase of oscillation motion. In practice we �nd the
phase of each motion as an angle, for which plot of not shifted sine function has the
same inclination state. For example, decreasing de�ection by values A/2 has a phase
equal to 5/6π or 150◦.

The initial phase is de�ned as the state of motion at time t = 0 and it is selected
arbitrarily. Taking for example ϕ = 0, we assume, that in time t = 0 oscillating point
passing through the equilibrium position for the side of positive inclination. The phase
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Figure 13.1. De�ection in harmonic motion as a function of time (t) or phase (ωt+ ϕ0)

is expressed in angle units (degrees or radians). An example of a harmonic motion
diagram with some phases marked is shown in (Figure 13.1).

The velocity of the wave propagation is called the speed of the constant phase de-
�ection. The de�ection y of any moment t, at a distance x from the source of vibration
is described by the wave function:

y = A sin(ωt− kx− ϕ0), (13.2)

where: k = 2π/λ - wave number, λ- wavelength, ϕ0- phase at point x = 0 and at time
t = 0. The wave phase is the expression (ωt − kx − ϕ0). Wave equation is doubly
periodic, relative to time and space. The relationship between the period T and the
length of the wave can be found in the consideration of the motion of a constant phase
de�ection. The phase stability is described by the equation:

ωt− kx− ϕ0 = const. (13.3)

We calculate from the equation (13.3) the value of x:

x =
ωt− ϕ0

k
, (13.4)

and then di�erentiating with respect to time t, we get the formula for the wave speed:

v =
dx

dt
=

ω

k
=

2π
T
2π
λ

=
λ

T
= λ · f, (13.5)

where T - wave period, f - frequency of acoustic wave.
Thus, the wavelength is the path travelled by the wave during one period.
Acoustic waves can propagate in solids, liquids and gases. Acoustic waves with

frequencies ranging from 20 Hz to 20,000 Hz are called audible waves, because they
evoke auditory sensations in the human brain. The sources of audible waves are vi-
brating strings (e.g. violin, guitar, human vocal cords), vibrating columns of air (e.g.
pipes, organs, clarinet) and vibrating plates and membranes (e.g. drum, loudspeaker).
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these vibrating objects alternately condense and dilute the surrounding air, causing the
particles to move back and forth. air carries this disturbance from its source into space.

The perception of the perceived sound is determined by its intensity, pitch and color.
The aforementioned features of sound depend on the appropriate wave parameters -
amplitude, frequency and harmonic vibration content.

Wave speed in the air

The speed of propagation of longitudinal waves in a continuous medium can be given
by the formula:

v =

√
E

ρ
, (13.6)

where E - Young's modulus of the medium, ρ - its density. By converting the Hooke's
law, you can write:

E =
−dp
dV
V

, (13.7)

dp and dV di�erential changes of pressure and volume of gas of volume V .
Sound vibrations propagate so fast that compression and thinning of the gas can be

considered adiabatic, so the change in the gas state follows the Poisson formula:

pV κ = const, (13.8)

κ - ratio of speci�c heat at constant pressure to speci�c heat at constant volume (for
2-atom gases κ = 1.4).

Di�erentiating Poisson's formula we obtain:

V κdp+ κV κ−1pdV = 0, (13.9)

and from here
dp
dV
V

= −κp. (13.10)

After substituting the obtained value into equation 13.7 and then taking into account the
Young modulus form obtained in this way in equation 13.6, we express the longitudinal
wave velocity by the formula:

v =

√
κ · p
ρ

. (13.11)

To eliminate the density ρ, we take the de�nition of this quantity and multiply the
numerator and denominator by p - gas pressure. Note that in the denominator we have
the product of pV , which we can replace with the product of nRT based on the ideal
gas equation:

ρ =
m

V

p

p
=

mp

nRT
, (13.12)
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Figure 13.2. Block diagram of
the electrical system; G - sinu-
soidal voltage generator, M - mi-
crophone, S - speaker, X, Y, - os-

cilloscope inputs

Figure 13.3. Construction of Lissajous �gure for phase di�er-
ence 45◦ (a) and examples of Lissajous �gures for other phase

di�erence and periods (b)

where: m -mass of gas, n- amount of gas in moles , R- universal gas constant, T -
temperature.

The number of moles n can be expressed as the ratio of the total mass of gas to the
mass of 1 mole µ: n = m/µ. Taking this into account in the above equations, we get a
formula for the speed of sound:

v =

√
κRT

µ
. (13.13)

The principle of measurement

The aim of the exercise is to determine the speed of sound v in the air from the
formula:

v = λf, (13.14)

where λ is the wavelength, and f is frequency of sound wave.
The frequency f is measured directly by the frequency meter, while to determine

the wavelength we will use the method explained below.
At one end of the horizontal bench we place the loudspeaker connected to the electric

vibration generator acting as the source of the waves (Figure 13.2). To pick them up
we use a microphone moved on a movable cart along the bench.

We apply the speaker voltage to the X oscilloscope plates, and the microphone
voltage to the Y plates. Both voltages change over time and re�ect the movement of



4. Mechanics 48

vibrating air particles. on the oscilloscope screen we will receive an image in the form
of �gur Lissajous (Figure 13.3).

The Lissajous �gure arises as a result of overlapping two harmonic movements whose
vibration directions are perpendicular to each other. Its shape depends on the di�erence
between the phases of the component vibrations and the ratio of their frequency. In the
exercise the vibration frequency is equal, so the shape of the �gures is determined only
by the phase di�erence between the speaker and the microphone.

The shape of the Lissajous �gure is a periodic function of the phase di�erence, with
a period of 2π, or it will be the same for all microphone settings that di�er by the total
multiple of the wavelength.

The sound wave length is measured using the above property. We determine the
distances between neighboring positions of the microphone, for which we obtain the
same shape of the Lissajous �gure. The most accurate results are when the �gure is a
straight line with the same slope (0, 2π, 4π, etc.).

When we know the wavelength and read the frequency from the meter, we calculate
the speed of the sound using the formula 13.14. In order to obtain a more accurate
result, we perform measurements for various frequency values. Finally, we compare the
result with the speed of sound obtained from the formula 13.13. To do this, measure
the room temperature during measurements.

The exercise aims at determining the speed of sound in the air. The experimental
setup is a wave generator connected to a speaker as well as a microphone (at a regulated
distance from the speaker) used to receive the signal.

Experimental Procedure:

1. Connect the electrical system as per (Figure 13.1)
2. Start the acoustic generator and set the selected frequency (in the range from 3 kHz

to 8 kHz).
3. Start the oscilloscope.
4. On the oscilloscope, set the image about the size of about half the size of the screen.
5. By changing the microphone distances from the speaker, in the entire range, �nd the

positions in which the image is a straight line with the same sign of the slope factor.
6. Estimate if the distances between consecutive positions are the same (approxi-

mately). If not, the measurements should be rejected.
7. Calculate the average di�erence in microphone positions and wavelength.
8. For the calculated wavelength, calculate the speed of sound from the equation 13.14.
9. Calculate the speed of sound for several other frequencies.
10. Calculate the average speed of sound and the standard deviation of the mean.
11. Calculate the speed of sound based on the equation 13.13 and compare with the

experimental result.
Note: The ratio of speci�c heat at constant pressure to speci�c heat at constant
volume for air is: κ = 1.4.

12. Write down the �nal conclusions

Keywords:
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• Mechanisms of wave propagation in an elastic medium, longitudinal and transverse
waves

• Harmonic movement: time dependence of swing, phase, initial phase
• Wave motion: the dependence of de�ection on time and space, period, wave length,
wave speed

• Acoustic waves, sound features
• Hooke's law, adiabatic transformation, Poisson equation, deriving the formula for
the speed of sound in perfect gas

• Wavelength measurement of phase shift
• Construction of Lissajous �gures

14. Determination of gravitational acceleration using a
reversible and mathematical pendulum

Intorduction
Physical and mathematical pendulums oscillate under the in�uence of gravity. In

the range of small amplitudes, this motion is a harmonic motion, its period depends on
the properties of a given pendulum and the gravitational acceleration.

A physical pendulum is any rigid body that can swing around its horizontal axis.
After swinging out of equilibrium, the moment of gravity mgL sinφ acts on the body
(Fig. 14.1). By applying the second law of dynamics to this situation, we obtain the
equation:

−mgL sinφ = I
d2φ

dt2
, (14.1)

Figure 14.1. Physical pen-
dulum; A, B - suspension
points, C - center of mass

where: I - moment of inertia of the body with respect to
the suspension point A, φ - angle of de�ection from the
equilibrium position, L - distance from the suspension
point A to the center of gravity C. The minus sign in
equation (14.1) indicates that the e�ect of the moment
of force always results in a decrease in the de�ection of
the body.

The basic property of harmonic motion is that the
acceleration is proportional to de�ection (linear or an-
gular). Taking the above into account, we note that the
motion of the physical pendulum in general is not a har-
monic motion - equation (14.1) shows that the angular
acceleration is proportional to the sine of the de�ection
angle, and not to the angle itself. Only the criterion of
harmonic motion will be met in the range of small swings
for which sinφ = φ. If we limit ourselves to small de�ec-
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tions (a few degrees), the equation (14.1) can be written
as:

d2φ

dt2
= −mgL

I
φ. (14.2)

The general equation of harmonic motion takes the form:

d2φ

dt2
= −ω2φ, (14.3)

where ω is the angular velocity. As a result of comparing the last two equations, we
obtain the expression that determines the period of the physical pendulum:

Tf = 2π

√
I

D
, (14.4)

where D = mgL is the steering moment. A mathematical pendulum di�ers signi�cantly
from the physical one in mass distribution - it is a material point suspended on a
weightless thread. If we denote the thread length by l, the period of the mathematical
pendulum's vibrations is given by the formula:

Tm = 2π

√
l

g
, (14.5)

Imagine that we have a speci�c physical pendulum, as well as a mathematical pendulum
with an adjustable length. It is obvious that we can choose the length of the latter so
that the periods of vibration of both pendulums are equal. Thus, we have determined
the reduced length of the physical pendulum. It is equal to the length of a mathematical
pendulum having the same period.

We calculate the reduced length lr by comparing equations (14.4) and (14.5) with
each other.

lr =
I

mL
. (14.6)

If we know the reduction of a physical pendulum, then its oscillation period can be
found using the equation for the mathematical pendulum; It is not necessary to know
either the moment of inertia or the steering moment.

Tf = 2π

√
lr
g
, (14.7)

To determine the reduced length we use the following property of the physical pendulum:
if the period of the suspended pendulum at A is equal to the period of the suspended
pendulum at B (Fig. 14.1), then the distance between the suspension points is the
reduced length.

To demonstrate this property, we will �rst assume that the distance between the
suspension points (AB = l) is arbitrary, and then we will �nd the conditions for which
TA and TB are possible.

TA = 2π

√
IA

mgL
, TB = 2π

√
IB

mg(l − L)
. (14.8)
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Moments of inertia with respect to the axes passing through the points A and B are
weighed by the moment Ic with respect to the parallel axis passing through the center
of gravity. On the basis of Steiner theorem, the corresponding moments are determined
by the expressions:

IA = IC +mL2,

IB = IC +m(l − L)2.
(14.9)

After taking into account the above relationships, we bring the condition of equal periods
TA = TB to the form:

IC +mL2

L
=

IC +m(l − L)2

l − L
. (14.10)

This is a quadratic equation for l. Solving them in an elementary way, you will get two
solutions:

l1 = 2L, (14.11)

l2 =
IC +mL2

mL
=

IA
mL

. (14.12)

The value of l1 corresponds to the case when both suspension points are
symmetrical to the center of gravity, while l2 is just the reduced length,
which we can �nd by comparing the last equation with equation (eqn:e102.6).

Figure 14.2. The
reversible pen-
dulum; A, B -
suspension points,
S1, S2 - movable

lenses

The above reasoning proves that indeed, if the periods of a
pendulum suspended at di�erent points are equal, the distance
between these points is the reduced length of the physical pendu-
lum.

A special form of a physical pendulum, facilitating the de-
termination of the reduced length, is a reversible or reversible
pendulum, the structure of which is shown in Fig. 14.2.

There are two axes A and B on the metal rod, serving as
suspension points and at the same time the oscillation axes and
metal weights in the form of S1 and S2 lenses. Axes and lenses
can be moved along the rod. The position of the center of mass
and the moment of inertia depend on the position of the lenses.
The pendulum is not reversible for any position of the axis and
lenses - the oscillation periods for both suspensions are di�erent.
By manipulating the position of the lens, we can make the two
oscillation periods equal, and only then is the distance between
the axes a reduced length.
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Measurements:

A. The mathematical pendulum

1. Mount the photoelectric sensor so that its mathematical pendulum ball is sealed.
2. Take measurements for several lengths (l) of the pendulum, measure the duration of

ten swings (tm) at least three times.
3. Note the accuracy of the time measurements (∆t) and pendulum length (∆l).

B. The reversible pendulum

1. The reversible pendulum has two axes (A, B) and two lens-shaped weights (S1, S2).
Measure the time of 10 pendulum cycles hanging on the A axis and calculate the
period TA.

2. Systematically change the position of the S1 weight by 5-10 cm along the A − B
distance. At each setup measure the the TA period.

3. Invert the pendulum by hanging it on the B axis.
4. Repeat the measurement of the T for B axis (TB periods) by changing the position

of the S1 lens every 5�10 cm in the entire range of positions between the A and B
axes.

Report:

A. The mathematical pendulum

1. Calculate the periods of vibration of the mathematical pendulum (Tm(l) - based on
time measurements).

2. Knowing the lengths of the mathematical pendulum and the period of its �uctu-
ations, calculate (for each length) the value of gravitational acceleration (gm(l),

Tm = 2π

√
l

g
).

3. Based on the results obtained, calculate the average acceleration of gravity deter-
mined using a mathematical pendulum (gm).

4. Calculate the uncertainty of this acceleration (∆gm) and present the �nal results of
the experiment (properly rounded o�).

B. The reversible pendulum

1. Plot the periods TA and TB as a function of the S1 weight position (both curves on
the same graph).

2. The crossing point of the curves represents the T period identical for both setup.
The point of intersection of TA and TB curves determines the period T , the same for
both suspensions. Note: The second coordinate of the intersection is not a reduced
length!

3. Estimate the error of reading the intersection point on the graph. This is also an
error in determining the period.
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4. Based on the determined reduced length1 lr, calculate the gravitational acceleration

g from (eq. 14.7): T = 2π

√
lr
g

5. Calculate the error g - the easiest way using the logarithmic di�erential method.
6. Round o� and compile the results and their errors.
7. Write down the �nal conclusions

Keywords

• Simple and damped harmonic motion: acting forces, di�erential equation, time de-
pendence of the deviation

• Second law of dynamics
• Physical pendulum: center of gravity, moment of force, moment of inertia, the period
of �uctuations, length reduced

• Steiner theorem (see also chapter 16 and 20)
• Reversible pendulum; measurement activities

15. Determination of the linear expansion coe�cient of solids

Introduction

A change in body temperature is usually accompanied by a change in its linear
dimensions, and thus also a change in volume. Elementary temperature rise dT of the
body, whose length is l, causes an increase in length l by dl given by the formula:

dl = αldT. (15.1)

The α factor is called the linear expansion coe�cient. Its numerical value is the relative
length increment dl/l caused by a temperature change of 1◦C and depends on the type
of body and also on the temperature.

Due to the dependence of the α coe�cient on temperature, body length is generally a
non-linear function of temperature. Within the scope of slight changes in temperature, it
can be approximately assumed that the coe�cient α is constant and the length increases
in direct proportion to the temperature. In this case, the equivalent of formula (15.1)
is the following formula:

l − l0 = αsrl0∆T, (15.2)

which allows a simple length calculation at any temperature.
The causes of the phenomenon of thermal expansion are to be found in the mi-

croscopic structure of bodies. Solids are made of atoms (ions) distributed regularly in
space and forming a crystal lattice. The atoms are bound together by electrical forces,
which prevents them from permanently changing their position. The thermal energy

1 A reduced length of a physical pendulum lr is the length at which a reversible pendulum placed
on A or B axis has the same period. For used in this exercise reversible pendulum the distance between
A and B axis is the reduced length lr = 0.87± 0.01 [m].
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supplied to the crystal causes the atoms to vibrate around the equilibrium positions.
The amplitude of these vibrations increases with temperature. The thermal oscillation
frequency of the atoms is up to 1013 Hz. In this situation, the concept of interatomic
distance only makes sense as the distance between the centers of vibration of adjacent
atoms.

Figure 15.1. The potential energy of two
atoms as a function of their mutual dis-

tance

The potential energy of two interacting
atoms as a function of the distance between
atoms is given by the curve presented in
Fig. 15.1.

If the kinetic energy of the atoms were
zero, they would be at a distance of r0 from
each other, and at this distance, the poten-
tial energy has a minimum. In fact, atoms
vibrate around equilibrium positions, i.e.
they have a speci�c kinetic energy that in-
creases with increasing temperature. At T1,
the distance between atoms varies from a1
to b1. Due to the asymmetry of the poten-
tial curve, the mean position of the vibrat-
ing particle will not coincide with the value
of r0, but will shift to the right and will
reach the value of r1. After increasing the
temperature to T2, the system will move
to a higher energy level E2 - the distance
will change from a2 to b2, and the average

position will reach value r2.
The above description shows that with increasing temperature, not only the vibra-

tion amplitude of atoms increases, but also the average distance between them, which
macroscopically manifests as thermal expansion.

Analogously to the linear expansion coe�cient, we de�ne the volumetric expansion
coe�cient:

γ =
dV

V0dT
. (15.3)

The body volume when heated by ∆T is given by the formula:

V = V0(1 + γsr∆T ). (15.4)

In order to �nd the relationship between α and γ, consider a cube whose edges increase
in length according to equation (15.2). The volume of the cube depending on the
temperature can be expressed as:

l3 = l30(1 + αsr∆T )3. (15.5)

The binomial cube expansion contains the product α∆T in the �rst, second and third
powers. Since this product is small relative to one, the second and third powers of this
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product are very small and we can omit them in the expansion of the binomial cube. In
view of the above, the equation (15.5) can be written as:

l3 ≈ l30(1 + 3αsr∆T ). (15.6)

Comparing the last equation with the equation (15.4), we come to the conclusion that

γ ≈ 3α. (15.7)

The value of the linear expansion coe�cient in polycrystalline and amorphous bodies
does not depend on the direction, while in single crystals (anisotropic bodies) the de-
pendence on the direction is clear - instead of one, there are three main linear expansion
coe�cients, determined for the three crystallographic axes of the crystal.

Principle of measurement
Place the tested object in the form of a rod in a water jacket (Fig. 15.2) after it is

connected to the thermostat. One end of the rod is �xed in the handle, while the other
end moves as it is heated. The rod elongation is measured with a micrometric sensor,
and the rod temperature is measured with an electronic thermometer or a thermocouple
and a millivoltmeter. In order to calculate the coe�cient of expansion from the measured
data, we will write the equation (15.2) as:

∆l = αsrl0T − αsrl0T0, (15.8)

where T0 is the initial temperature at which the bar length is l0.
Equation (15.8) means that the elongation is a linear function of temperature and

that the slope of the line is
a = αsrl0. (15.9)

We compute the value of a by applying linear regression to data pairs (∆l, T ). If we
also measure l0, then equation (15.9) can be used to �nally calculate the expansion
coe�cient.

Figure 15.2. The experimental setup for measuring linear expansion of solids
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Measurements:

1. Measure the initial length of given solid rods by using the built-in caliper (see 5).
2. Read o� the initial temperature.
3. Heat the rods by using the ultrathermostat and according to the instructions given

in class (for details see section 7).
4. At each temperature (every 3-5 deg. Celsius) � record the exact temperature and

the length increase (dl) of all the rods by using the micrometer ((see 5).
5. When the �nal temperature is reached (approximately 70 deg. Celsius), continue

the measurements while cooling the system down.

Report:

1. Plot the elongation as a function of temperature and determine the slope coe�cient.
2. Calculate the linear expansion coe�cient α from the relation: areg = α · l0, where

areg is the slope coe�cient and l0 is the initial length.
3. Calculate the error, the easiest way is using the logarithmic di�erential method.
4. Present the �nal form of the results and errors after rounding.
5. Write down the �nal conclusions

Keywords:

• Length change with elementary temperature change, coe�cient of linear and volu-
metric expansion

• Length and volume at any temperature. The in�uence of temperature on the vibra-
tion amplitude and the distance between atoms, the potential energy of interaction
of two atoms

• Expansion of anisotropic bodies
• Temperature measurement
• Vernier, ultrathermostat (for details see section 5 and 7).

16. Investigation of the moment of inertia

Introduction

In the description of the dynamics of the translational movement, the notion of inertia
associated with mass appears in moving bodies. In the case of rotational movement, the
knowledge of body mass is insu�cient, and its spatial distribution relative to the axis
of rotation is also important. Physical parameter containing information on body mass
and its spatial distribution relative to the axis of rotation is moment of inertia I. This
quantity appears in the principles of the dynamics of the rotary motion, in principle the
conservation of momentum, etc. For a single point mass with massm rotating around an
axis distant from it by a distance of r (�g. 16.1a) we can get the following relationship
for the moment of inertia:

I = mr2. (16.1)
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In the case of a system N point masses rigidly connected to one another in relation to
the axis of rotation, called the axis of inertia (Fig. 16.1b), the moment of inertia of the
system is equal to the sum of moments of inertia of each point mass:

I = m1r
2
1 +m2r

2
2 + ...+mNr

2
N =

N∑
i−1

mir
2
i , (16.2)

where mi is a mass and i - this point mass, and ri its distance from the axis of inertia.
If we are dealing with a rigid solid with a mass M , we hypothetically divide it into a
set of in�nitely small elements (sections) with masses dm. The moment of inertia of a
solid is equal to the sum of moments of inertia of individual elements. Assuming that
mass dm element of the solid tends to zero, the sum can be written in an integral form:

I =

M∫
0

r2dm, (16.3)

where r is the distance of the element with mass dm from the rotation axis (�g. 16.1c).
Calculation of the moment of inertia on the basis of formula (16.3) are relatively simple

Figure 16.1. Visualization determining moment of inertia for a) a point mass b) the set of point
mass rigidly connected to one another, c) the rigid body.

only for solids having symmetry axis parallel to the axis of inertia (rod, cylinder, ball,
etc.). In the case of solids with a complex or irregular shape, analytical methods are
very complicated. In practice, the moment of inertia of such solids can be determined
using experimental methods or numerical analysis.

Steiner's Theorem

If one wants to calculate the moment of inertia with respect to any axis that does not
pass through the mass center of the mass, the Steiner's theorem becomes useful. It says
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that if the moment of inertia of the solid sti� with respect to the axis passing through
its center of mass equals I0, the moment of inertia of this mass rotating in relation to
another axis parallel to the axis passing through its center of mass is:

I = I0 +md2, (16.4)

where m is the mass of the body, and d is the distance between the axes. The above
theorem is depicted in Figure 16.2.

Figure 16.2. Illustration of Steiner's theorem: a) I0 - moment of inertia of the solid with respect
to the axis passing through its center of mass, b) I - moment of inertia of the solid relative to

the "new" axis of rotation.

Measurement system

In the exercise, moments of inertia of the steel rod and disk will be determined. An
additional task will be the experimental con�rmation of Steiner's theorem. A torsion
pendulum consisting of a stable base and a vertical axis mounted on bearings with
very low friction will serve for testing. The axis and the base are connected by means
of a spiral spring that allows torsional variations. At the end of the axis there is a
bolt that allows the solids to be attached to it (Figure 16.3a). During the exercise, the
pendulum axis will be �xed: a rod, a rod with two weights or a disk (Figure 16.3). There
are notches on the rod, and special weights are screwed into the weights, which allows
precise placing of weights on the rod (by moving the weight along the rod, we feel a clear
jump of the screw to the cut). In a metal shield used to study the Steiner's theorem, a
series of holes were drilled through which the target on the axis of the pendulum could
be fastened. The torsion pendulum is a special case of a physical pendulum. If we
assume that the swing of the pendulum is small (up to about 180◦) and we neglect the
resistance, its motion can be described as simple harmonic movement. In that case, the
period T of the pendulum oscillation can be written as follows:

T = 2π

√
I

D
, (16.5)
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Figure 16.3. Torsion pendulum: a) a set for determining the restoring torque, b) a set for
testing the Steiner's theorem

where I is the moment of inertia of the solid mounted on the axis of the pendulum, and
D is steering torque pendulum springs. Steering torque D is a parameter characteristic
for a given spring, depending on its construction, type of material, hardening method,
etc.

Measurements and calculations

By having a torsion pendulum, we can calculate the moment of inertia of the solid
attached to it. We will use for this purpose the transformed equation 16.5, the result of
the vibration period measurement T and the designated restoring torque D:

I = D

(
T

2π

)2

. (16.6)

Determining the restoring torque

In the exercise in question, we will determine the spring driving moment by measur-
ing the periods of �uctuation of a rod loaded with two weights (Figure 16.3a). Moment
of inertia of the system consisting of a rod with two weights, located symmetrically in
the distance r from the rotation axis, you can get the following equation:

I = IP + 2mCr
2, (16.7)

where IP is the moment of inertia of the rod, and mC is the mass of each weight. Based
on the formula 16.6, the moment of inertia of the rod mounted on the axis can be
calculated using the equation:

IP = D

(
TP

2π

)2

, (16.8)

where TP is the period of oscillation of the pendulum loaded with a rod (without
weights). Substituting for the equation 16.6 formulas 16.7 and 16.8, we get the following
relationship:

D

(
T

2π

)2

= 2mCr
2 +D

(
TP

2π

)2

, (16.9)
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which after simplyfying takes the form:

T 2 =
8π2mC

D
r2 + T 2

P . (16.10)

By making the following substitutions in the above equation, y = T 2, x = r2, a =
8π2mC/D and b = TP , the type dependency is obtained y = aregx+ breg. It is a linear
function, where the value areg is the directional coe�cient of the line breg intersection
with the axis y. Applying the linear regression method to the relation between the
square of the vibration period to the square of the distance of weights from the axis:
T 2 = f(r2), the slope coe�cient of the straight line can be determined areg, and then
the restoring torque:

D =
8π2mC

areg
. (16.11)

Determination of moments of inertia of a bar and disk
in relation to their axis of symmetry

In order to determine the moment of inertia of a rod, you can use the previous period
measurement for an unloaded rod and from equation 16.8. In order to determine the
moment of inertia of the disk, one should fasten its center on the axis, and then measure
the period of oscillation of the pendulum. Using the equation 16.6, we will determine
the experimental value of the moment of inertia of the disk. If you want to compare the
experimental values obtained with the theoretical values, you should weigh both blocks,
measure the length of the rod and the diameter of the disk. The theoretical values of
the moments of inertia are calculated from the following equations:

I =
1

12
ml2, (16.12)

I =
1

2
MR2, (16.13)

where m is the weight of the rod, l - length of the rod, M - disk mass, R - disk radius.

Experimental con�rmation of Steiner's theorem

for testing, we will use a pendulum with a mounted disk in the con�guration shown
in (Figure 16.3b). The disk is then screwed on the axis for di�erent distances d from
the center of the disk (0, 2, 4, ..., 14 cm). For each position, we determine the period of
oscillation of the pendulum, and then, using the equation 16.6, the moment of inertia of
disk. In order to con�rm Steiner's theorem, the theoretical moment of inertia of the disk
based on the equation is calculated 16.4, which in the above case will take the following
form:

I =
1

2
MR2 +Md2. (16.14)
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Experimental Procedure
A. Determination of restoring torque of spring

1. Determine: the mass of weights, the mass and length of the rod and the distance
between the cuts on the rod. Save measuring accuracy.

2. Fasten the center of the rod to the pendulum axis, then tilt it about 90◦ and let go.
Use the stopwatch to measure the time of �ve periods of de�ection (t = 5T ). Repeat
this procedure twice more.

3. Slide the weights onto the rod and adjust them symmetrically so that their centers
coincide with the notches on the rod closest to the center (with the precise setting
feeling the screwing of the screw to the cut). Perform period measurements analogous
to point 2.

4. Measurements from point 3 continue for the next distances r weights from the axis
of rotation .

5. For each position of the weights, calculate the average time of �ve wobble periods,
followed by the vibration period T .

6. Plot the relationship of the period to the square of the distance of the weights
T 2 = f(r2).

7. Use the linear regression method to determine the slope coe�cient of the straight
line areg and its measurement uncertainty ∆areg. Then, using the equation 16.11,
calculate the restoring torque D and its measurement uncertainty. Complete the
unit account.

B. Determination of moments of inertia of a bar and disk in relation to
their axis of symmetry

1. Using the results obtained in points A.1 and A.2 and the equation 16.8, calculate
the moment of inertia of the rod.

2. Determine the mass of the disk and its diameter. Mount the disk so that its center
coincides with the axis of rotation. Perform measurements analogously to point A 2.

3. Calculate the average oscillation period of the disk and its moment of inertia (use
equation 16.6).

4. Using the results of mass measurements of solids, rod length and disk diameter,
calculate the theoretical values of moments of inertia based on formulas 16.12 and
16.13. Compare experimental and theoretical results.

C. Experimental con�rmation of Steiner's theorem

1. Continue to measure vibration period analogically to the previous ones, changing
the distance of the axis from axle of symmetry d every 2 cm (0, 2, 4, ..., 14 cm).

2. Calculate the mean values of the �uctuation periods and the moments of inertia of
the disk using the equation 16.6.

3. Calculate from the equation 16.14 the theoretical values of the moment of inertia of
the disk with respect to the subsequent rotational axes.

4. Compare in the table experimentally and theoretically obtained moments of inertia
of the disk to con�rm Steiner's theorem.
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5. Using the common coordinate system, plot the experimental and theoretical moments
of inertia of the disk as a function of the square of the axis distance from the center
of the disk: I = f(d2).

6. Write down the �nal conclusions

Keywords:

• moment of inertia
• torsion spring
• Steiner's theorem
• linear regression

17. Determination of Young's modulus by the de�ection method

Introduction

When a force perpendicular to its length acts on a longitudinal bar, it bends, and
the value of the so-called de�ection arrows S (Fig. 17.1) is proportional to the F force,
and also depends on the geometrical dimensions, the method of �xing the bar and the
type of material it is made of. This statement is Hooke's law of de�ection.

Let us consider in more detail the de�ection of a bar (beam), one end of which
is �xed horizontally and the other end has a vertical force F (Fig. 17.1). Under the
action of force, the upper layers of the bar are stretched, and the lower layers are
compressed. There is a layer in the middle of the height, the length of which does not
change. Perpendicular sections of a bar, when there is no load, they are parallel but
form a certain angle φ when a force is applied. Figure 17.2 shows the considered sections
through 1 and 2 and the angle φ between 1 and 2 (1′ is a parallel shift of the section to
the line of intersection of the neutral layer N with section 2).

Consider a bar element of length ∆r, thickness ∆y and width b, which is x from
the �xed edge and y above the middle layer. As a result of beam de�ection, the test
layer is elongated as if it were stretched by the force applied to the section with the
area ∆yb. According to Hooke's law, the elongation is proportional to the force and the
initial length and inversely proportional to the cross-sectional area:

yφ =
Fn∆x

Eb∆y
, (17.1)

where E - Young's modulus, Fn - tensile force of the considered elementary layer.
The same force, but in the opposite direction, acts on the elementary layer situated

symmetrically below the neutral layer N.
The moment of force Fn with respect to the N layer

∆M = yFn = E
φ

∆x
y2b∆y, (17.2)
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Figure 17.1. De�ection of bars
Figure 17.2. Element of a bending bar.

The total moment M of forces acting on all layers between sections 1 and 2 is calculated
by integrating equation (17.2) with respect to y over the entire thickness

M = E
φ

∆x

+h/2∫
−h/2

y2bdy. (17.3)

After marking

H =

+h/2∫
−h/2

y2bdy (17.4)

we can write the equation (17.3) in the form:

M = E
φ

∆x
H. (17.5)

We obtained the above expression considering the deformation of the rod. The imme-
diate cause of this de�ection is the F force applied to the end of the bar. The moment
of this force with respect to cross-section 2 is F (l − (x + ∆x)) or after neglecting the
value of ∆x as small compared to x

M = (l − x)F. (17.6)

The angle φ is also included between the tangents to the bar at the points where
sections 1 and 2 intersect the top surface. Based on the drawing, we can write:

φ =
∆S

l − x
. (17.7)
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After taking into account the last relationship in equation (17.5) and comparing equa-
tions (17.5) and (17.6), we will obtain an elementary de�ection arrow:

∆S =
F

EH
(l − x)2∆x. (17.8)

We will obtain the total de�ection arrow by summing up the analogous expression for
all segments ∆x. If we replace the segments ∆x with in�nitely small increments of dx,
we can integrate equation (17.8):

∆S =
F

EH

l∫
0

(l − x)2dx. (17.9)

After integrating, the expression for the integral de�ection arrow takes the form:

S =
F

3EH
l3. (17.10)

The value of the H factor depends on the shapes and geometrical sizes of the bar. When
the cross-section is a rectangle h high and b wide, the integration of equation (17.4) leads
to the result:

Hpr =
1

12
bh3. (17.11)

Integrating a similar expression for a circular section gives

Hk =
π

4
r4. (17.12)

Substituting the values of H coe�cients, we obtain the de�ection arrows from the
cross-sections, respectively

Spr =
4l3

Ebh3
F, (17.13)

Sk =
4l3

3πEr4
F. (17.14)

The above formulas express Hooke's law with respect to de�ection. The obtained for-
mulas relate to a bar loaded with one side and one side fastened end. They can be
easily adapted to the situation where the bar is resting freely at both ends and loaded
in the middle. It then behaves as if it were �xed in the center with forces F/2 directed
upwards at its ends. The force F/2 then acts on a l/2 bar.

After taking into account the above remarks in formulas (17.13) and (17.14), we will
obtain formulas for de�ection arrows of bars supported on both sides.

S ′
pr =

l3

4Ebh3
F, (17.15)

S ′
k =

l3

12πEr4
F. (17.16)
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The formulas (17.15 and 17.16) are used to determine the Young's modulus because all
the quantities appearing in them are easy to measure.

Measurements and calculations

The de�ection arrow is measured with a catetometer - a device for remote height
measurement - by setting the intersection of the spider's threads �rst on the edge of
the unloaded rod, halfway along its length, and then on the same edge with gradually
changing load on the rod. The de�ection arrow is equal to the di�erence in the positions
of the catetometer sight.

The length of l between the supporting edges is measured with a measure with a
millimeter scale.

The width and height of the bar, or the diameter, are measured with a micrometer
(if necessary, in many places). We change the load gradually by putting on weights of
known masses.

Based on equations (17.15 and 17.16), we can see that the dependence of the de�ec-
tion arrow on the applied force is a linear function, and the slope factor a of the line is
equal to the expression at F and amounts to:

apr =
l3

4Ebh3
(bar with rectangular section), (17.17)

ak =
l3

12πEr4
(bar with circular section). (17.18)

The slope factor can also be calculated by linear regression when only a series of forces
and their corresponding de�ection arrows are known. Thus, the Young's modulus
remains the only unknown quantity in the last equations.

Measurements:
Note: In the experiment, the catetometer was replaced with an electronic micrometric
sensor. The exercise aims at determining Young's modulus of solid rods/bars.

1. Determine width (b) and height (h) of the rod/bar (do the measurement at least
three times).

2. Determine systematic error of the measurements.
3. Measure the distance l between the rod's supports.
4. Assume the mass of the weights m = 50 g with the systematic error of 1 g.
5. Align the rod on the supports so that the sensor points at its center.
6. Turn on the sensor and reset it to zero.
7. Increase the weight of the rod by adding weights. Each time measure the rod's

de�ection S and its systematic error.
8. Repeat the measurements while decreasing weight.
9. Repeat the experiment for the remaining rods/bars.
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Report:

1. Calculate the force acting on the rod/bar Fg = m · g where g = 9.81 m/s2.
2. For each rod/bar, plot the de�ection as a function of the force: S = f(Fg).
3. Determine the slope coe�cients (linear regression areg).

4. Calculate the Young modulus E from the relation: areg =
l3

4Ebh3

5. Calculate its uncertainty (∆E).
6. Present the �nal results of the experiment (properly rounded) and compare to the

table values (literature values) for the tested materials.
7. Write down the �nal conclusions

Keywords:

• Interatomic interaction: the relationship of potential energy and force from the dis-
tance

• Elastic and plastic deformation, limit of proportionality, elasticity, endurance
• Relative deformation, normal and tangential stresses
• Hooke's law, Young's modulus
• De�ection: de�ection arrow, mathematical description
• Calculation of Young's modulus on the basis of performed measurements
• Linear Regression

18. Investigation of the uniformly accelerated motion using a
computer measuring set

Introduction

The type of movement the body performs depends on the property of the force
causing it. For example, central force causes circular motion, force proportional to
de�ection from equilibrium - harmonic motion, zero force - uniform motion, constant
force - uniformly varying motion. The position of a material point in space is described
by a guide vector, expressed by three coordinates

r⃗ = r⃗(x, y, z). (18.1)

The coordinates of the moving point vary with time, and the tip of the guidance
vector moves to trace the path along which the movement takes place. In general, the
path may be a curved line and its increments in successive time periods may be di�erent.
The motion is characterized by three parameters: s path, v velocity and a acceleration.
In general, all three quantities are vectors, but for the purposes of this exercise, we
will only consider straight-line motion and scalar quantities. If we take the path as the
starting point, the remaining quantities are de�ned as follows:

v =
ds

dt
, (18.2)
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a =
d2s

dt2
or a =

dv

dt
. (18.3)

Speed and acceleration are generally quantities that vary with time. Derivatives appear-
ing in the above equations allow to calculate the instantaneous speed and instantaneous
acceleration at any time t, because the increments used in the calculations are very
small.

In the case of a uniformly varying motion, the acceleration is constant and from
equation (21.3) we can determine the speed at any moment. Suppose at time t = 0 the
velocity is V o, and at any time t it is v. After transforming the equation to the form
dv = adt we can integrate both sides within the appropriate limits:

v∫
v0

dv = a

t∫
0

dt. (18.4)

Computing the integrals leads to the dependence of speed on time

v = v0 + at. (18.5)

In a similar way we can obtain integrals containing the path:

s∫
0

ds =

t∫
0

(v0 + at)dt. (18.6)

and ultimately the dependence of the path on time

s = v0t+
at2

2
. (18.7)

Earth acceleration

Every body in the Earth's gravitational �eld is exerted by a force towards the center
of the Earth. This force is called the force of gravity, and its value is determined by the
law of universal gravity:

F = G
mM

R2
. (18.8)

where G is the gravitational constant, m - the mass of the body, M - the mass of the
Earth, R - the distance from the center of the Earth.

The same force can be expressed by the second law of dynamics:

F = mg. (18.9)

The value g in this equation is the acceleration due to gravity. Comparing the last two
expressions, we see that the gravitational acceleration can be expressed in the form of
the equation:

g = G
M

R2
, (18.10)
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which shows that it is not constant, but changes with the distance from the center of
the Earth. However, for phenomena occurring in the range of small heights ∆R above
the Earth's surface, it can be assumed with su�cient accuracy that the distance from
the center of the Earth is constant, so the acceleration of gravity is in this �xed range.

EXAMPLE
Calculate the change in the acceleration of gravity at the transition from the Earth's surface

to ∆R = 6.37 km. The radius of the Earth is approximately 6370 km, so ∆R/R = 0.001;

we can apply the error theory methods to such a small change. Applying the logarithmic

di�erential to equation (21.10), we get ∆g/g = 2∆R/R. The numeric value for ∆g/g, the

relative change in acceleration, is 0.2 %.

Inclined plane

The force of gravity mg of a body resting on an inclined plane is divided into two
components: the parallel component F and the component N perpendicular to it. The
e�ect of the force F is movement along the plane and therefore it is called the sliding
force. The N component does not lead to movement, but causes pressure of the body on
the ground, hence its name contact force. Both forces depend on the angle of inclination
of the plane and their values are respectively (see Fig. 18.1):

F = mg sinα, (18.11)

N = mg cosα. (18.12)

Pressure on the ground results in a frictional force that makes it di�cult for the body
to move or slows down movement. In any case, the friction force is proportional to the
pressure:

T = µN = µmg cosα. (18.13)

where µ is the coe�cient of friction depending on the type of body surface and ground.
In the range of low speeds, the µ value is constant.

Measurements and calculations

In the exercise we examine two cases of uniformly accelerated motion:

• free fall - to determine the acceleration due to gravity,
• movement on an inclined plane - to determine the coe�cient of friction. In both
cases we use the computer measuring set described in chapter 12 in a text book [2].

Free fall

In the exercise, we observe the free fall of the ladder shown in �g. 18.2. As a sensor,
we use a photo frame that directly measures the time of passing subsequent crossbars.
Before starting measurements, the parameter - distance between adjacent bars d must
be entered into the program. The parameter is entered into the window opened by
clicking on the sensor icon in the settings window. On the basis of the measured times,
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Figure 18.1. Forces acting on an inclined plane

Figure 18.2. Ladder for determining the accel-
eration of gravity

the program can calculate the distance traveled, the speed between successive bars, as
well as acceleration on individual sections. The method of selection and the form of data
presentation are described in chapter 3, section 12 (chapter 12 [2]). In this exercise, we
present the results as graphs of road and speed (two graphs) against time. Windows
containing these graphs should be opened before starting the measurements. Also, in
the speed plot, turn on Statistics and select Curve �t and linear function. We treat the
road chart qualitatively. It serves us only to visually check whether the corresponding
relationship is a polynomial of the second order, according to equation (18.7). The
velocity graph will be used to determine the acceleration due to gravity. In the case of
free fall, in equation (18.5) we convert the general acceleration to the acceleration due
to gravity g

v = v0 + gt. (18.14)

It can be seen from the above equation that velocity depends linearly on time, and
g is the slope coe�cient of the line describing the relationship v(t). We �nd the value
of g from linear regression.

In the statistics �eld we see the linear equation y = a1 + a2x and the values
of a1 and a2 calculated by the linear regression method. Regarding our chart,
a1 = v0 and a2 = g. Check that the measurement points are around a straight line.
If not, select the appropriate range of measurements in which this condition will be met.

Movement on an inclined plane

To determine the friction coe�cient, we use the inclined plane shown in �g. 18.1
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and the measuring computer system with a sensor in the form of a photo frame with a
disc.

The sliding force F and the force B directed in the opposite direction acts on the
trolley with the mass m and is the sum of the friction force T and the thread tension
S. The second law of dynamics for a wheelchair will then take the form:

ma = F − T − S, (18.15)

and for the counterweight mc

mca = S −mcg. (18.16)

From the last equation we calculate S and insert into the formula (18.15) together with
the previously calculated expressions for T and F . We get the equation:

ma = mg sinα− µmg cosα−mc(a+ g), (18.17)

from which we �nally calculate the friction coe�cient:

µ =
m(g sinα− a)−mc(a+ g)

mg cosα
. (18.18)

The above equation shows that the calculation of µ requires the knowledge of the
masses of the trolley and counterweight, the slope angle and the acceleration of the
trolley. We determine the masses using a scale, and the angle of inclination - from
measurements of the height and length of the slope. We use a computer set to determine
the acceleration.

The counterweight is connected to the cart by means of a thread thrown through a
pulley located between the arms of the photo frame. The rotating disk generates voltage
pulses re�ecting the obstruction or exposure of the photo frame detector through the
holes in the disk. The measuring system directly measures the rotation time between
adjacent holes. After entering the arc length corresponding to the rotation between
adjacent holes, the program can calculate the distance traveled by the trolley and the
speed or acceleration in the following points. This parameter is entered into the window
opened by clicking on the sensor icon in the settings window.

Motion on an inclined plane is uniformly accelerated motion; the speed of the trolley
is given by equation (21.5). This is a linear equation for v(t) with the slope factor
of a. After enabling Statistics in the Speed Graph pane, select Curve Fit and Linear
Function. The statistics �eld shows the equation y = a1 + a2x and the values a1 and a2
calculated by linear regression. Regarding our chart, a1 = v0 and a2 = a. Check that
the measuring points are in a straight line. If not, an appropriate range of measurements
should be selected in which this condition will be met.

Thus, we �nd the acceleration value. After inserting all non-measured values into
equation (18.18), we calculate the friction coe�cient. Measurements and calculations
can be repeated for di�erent slope angles and for di�erent counterweight loads.

Measurements:
Start the measuring system.
Turn on the computer and start the Science Workshop program. To read more about
the use of a computer in laboratory measurements please see section 12.
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A. Determination of gravitational acceleration:

1. (see 12)
2. Open the appropriately con�gured �le (drabinka.dat).
3. When releasing the ladder through a photo gate, plot the speed (v) versus time (t)

in the program.
4. Read, from the statistics �eld in the program, the slope factor of the straight line

v = v0 + gt we get linear �t y = a1 + a2x - acceleration (g = a2) of the ladder
movement. Repeat the measurement from ten to �fteen times.

B. Determination of the friction coe�cient of te�on-te�on:

1. Open the appropriately con�gured �le (rownia.dat).
2. The Te�on block can be additionally loaded with weights. For each measurement,

the weight of the loaded block (m), the mass of the counterweight (mc) and the angle
of inclination (α) should be recorded.

3. Release the block downwards. Read the slope factor of the straight line - acceleration
(ax) of the body movement (v = v0 + axt, a2 = ax).

4. Perform ten measurements for di�erent combinations of block weight, counterweight
weight, and pitch angle.

Additional information:
The weight of the empty Te�on block used in the exercise: 499 g.
Weight bar for hanging weights: 9.5 g.

Report:

A. Determination of gravitational acceleration:

1. Calculate the mean acceleration due to gravity (g) and its uncertainty (∆g).
2. Present the �nal results of the experiment (properly rounded).

B. Determination of the friction coe�cient of te�on-te�on:

1. Calculate the coe�cient of friction (µx) equally for each combination of
motion-related parameters.

2. Calculate the average value of the friction coe�cient

(µ =
m(g sinα− a)−mc(a+ g)

mg cosα
) and its uncertainty (∆µ).

3. Present the �nal results of the experiment (properly rounded).
4. Write down the �nal conclusions

Keywords:

• The type of motion and the acting force, de�nitions of speed and acceleration
• Uniformly variable motion: speed and distance dependence on time
• Law of universal gravity, acceleration of gravity as a function of distance from the
center of the Earth

• Shearing force, pressing force and friction force on an incline
• Il dynamics for the movement of a counterbalanced truck
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• Measurement program (see chapter 3, section 12 or chapter 12 in [2] ), settings
window, opening the chart window

• Sensor assignment, graph selection
• Statistics: switching on and o�, setting options; matching functions, interpretation
of matching parameters

19. Determination of the dependence of the viscosity coe�cient
on temperature

Introduction

Particles in a moving �uid (liquid or gas) have di�erent velocities. For ex-
ample, in a pipe, the speed of the particles directly touching the wall is zero,
and the particles moving along the axis of the pipe have the highest velocity.

Figure 19.1. Movement of selected
layers of viscous �uid

We can mentally divide any �uid into layers in
such a way that all particles in a single layer
have the same velocity. For a pipe, such a layer
would be in the shape of a thin cylinder. In
general, the shape of the layer is determined by
the shape of the vessel in which the �ow takes
place.

In all real �uids, friction forces occur be-
tween the layers. From the side of the faster
moving layer, a accelerating force acts on the
slower moving layer. On the other hand, from
the side of the slower moving layer, a braking
force acts on the faster moving layer (Fig. 19.1).
These forces, called internal friction forces, are
directed tangentially to the surface of the layers.
The internal friction force (FT ) is greater, the
greater the surface area (S) and the greater the
velocity gradient in the direction perpendicular

to the motion (dv/dz).

FT = ηS
dv

dz
. (19.1)

The velocity gradient is the limiting value of the ratio (v1−v2)/∆z for z → 0, numerically
equal to the di�erence in velocity of distant layers by a unit length. The quantity η,
depending on the type of liquid, is called the internal friction coe�cient or the viscosity
coe�cient. The dimension of the viscosity index is kg/(ms). A liquid has a unit viscosity
if the force of 1 N acting on an area of 1 m2 causes a velocity decrease of 1 m/s over a
distance of z = 1 m. In the less frequently used CGS system, a unit with the dimension
g/(cm·s), called poise, is used. Both units are easy to compare: 1 kg/(m·s) = 10 poise.
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The viscosity of the liquid is highly dependent on temperature; its value decreases
with increasing temperature. Temperature changes in gas viscosity are opposite - gas
viscosity increases with temperature.

An interesting phenomenon was discovered by Kapica. He found that liquid helium
at −271◦C (2 K) becomes over�uid in that its viscosity is zero. A solid body moving
in a non-viscous liquid does not meet any resistance, while the resistance given to the
body by a viscous liquid causes that its movement under the action of a constant force
is uniform (except for the initial section) and not accelerated.

The movement of a ball in a viscous liquid was described by Stokes - in our exercise
I will use the properties of this movement to determine the viscosity coe�cient.

Principle of measurement

At low ball velocities, when no vortices are formed, the drag force is directly deter-
mined by the viscosity of the liquid. The liquid layer directly adjacent to the ball sticks
to its surface and is completely lifted by it. This layer carries the next layer with it, but
its speed is slower. The speed of subsequent layers is even lower as a result of internal
frictional forces.

According to Stokes's law, the force of internal friction is directly proportional to
the speed and radius of the ball, and is expressed by the formula:

FT = 6πηrv, (19.2)

where: r - radius, v- ball speed.
In the exercise, the ball falls in the liquid under the in�uence of gravity:

FG = mg =
4

3
πr3dkg, (19.3)

where dk is the ball density, g - gravitational acceleration.
Apart from the above-mentioned forces, an important role is played by the buoyancy

which, according to Archimedes' law, is expressed by the formula

FW = mg =
4

3
πr3dcg, (19.4)

where dc- liquid density.
Taking into account the directions of action of the forces, we will write the resultant

force as:
F = FG − FW − FT . (19.5)

From the moment the ball is released (v0 = 0), its movement is accelerated because the
force of gravity is greater than the sum of the buoyancy and viscosity forces. As the
speed increases, the force FT also grows, which leads to a decrease in the resultant force
F . This continues until the resultant force becomes zero. From this point on, the ball's
movement becomes uniform.

In the conditions of the experiment we determine the speed by measuring the time
t in which the ball travels the �xed path l.
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The equations (19.5) for the uniform motion range (F = 0) we can determine the
viscosity coe�cient. After expressing the appropriate forces by equations from (19.5)
to (19.4) and transforming equation (19.5), we obtain the expression for the viscosity
coe�cient:

η =
2(dk − dc)gr

2t

9l
. (19.6)

This equation is the basis of the viscosity index method described below.

The Höpler viscometer

The purpose of this exercise is to �nd the value of the viscosity coe�cient with
temperature. We will use a Höpler viscometer and an ultrathermostat for this purpose.
In the Höpler viscometer, the structure of which is shown in Fig. 19.2, the diameter
of the cylinder only slightly exceeds the diameter of the ball, and the cylinder itself is
slightly oblique, thanks to which the ball rolls on the cylinder wall in a uniform motion.
Formula (19.6) is also used in this case, but we will write it now as:

η = K(dk − dc)t, (19.7)

Figure 19.2. The Höpler viscometer

where K is the constant of the instrument,
experimentally determined by measurement for
liquids with a known viscosity index.

The ball and liquid density is based on the
tables. The only thing that needs to be mea-
sured is the time the ball falls between the two
levels marked on the cylinder. In some types
of instruments, three levels are marked, which
makes it possible to determine the uniformity of
the ball movement. When the movement is uni-
form, the times of covering the upper and lower
section are equal. The measurement of the ball
falling time can be repeated many times - it is
enough to turn the device through an angle of
180◦ each time

The viscometer cylinder is surrounded by a
temperature-controlled water jacket, the value
of which is indicated by a thermometer im-
mersed in water. The casing of the water jacket
is connected with �exible wires to an ultrather-
mostat, in which the water temperature is regu-
lated. As a result of heat losses in the conduits

supplying the thermostating �uid to the viscometer, its temperature di�ers from the
value set on the ultrathermostat controller (for details see section 7). We take the
temperature indicated by the viscometer thermometer into account.

To �nd the constant K we use equation (19.7). It is substituted by the value η from
the tables for 20◦C and t - the falling time measured for the temperature of 20◦C. The
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value of n for other temperature values is calculated directly from equation (19.7) by
substituting the already known constant K and the measured fall time.

Measurements:

1. Set the thermostat control to 20◦C or 25◦C. Wait for the system temperature to
stabilize.

2. Read the temperature (T ) of the viscometer from the thermometer inside it. Record
the accuracy of the temperature measurement (∆T ).

3. Measure the ball drop time twice (t20◦C or t25◦C ). Record the accuracy of the time
measurement (∆t).

4. Double-measure the ball dropping times for successive temperature values. Change
it approximately every 3◦C up to 40◦C.

Report:

1. Calculate the viscosimeter constant K from the relation: η = K(db − dg)t, where db
is the density of the ball equal to (8150± 10) kg/m3, dg = 1262, 01 kg/m3 [8], is the
density of the liquid (glicerine), η20◦C = 1.499 Pa·s at 20◦C, η25◦C = 0.945 Pa·s at
25◦C [8].

2. Calculate the coe�cient of viscosity η for each temperature.
3. Plot the coe�cient of viscosity as a function of temperature. Plot the error rectangles

(∆T , ∆η)
4. Write down the �nal conclusions

Keywords:

• Internal �uid friction, friction force and velocity gradient, viscosity coe�cient, vis-
cosity coe�cient units, temperature dependence

• Stokes's law, buoyancy, resultant force acting on a ball, condition of uniform ball
motion in a �uid

• Höpler viscometer, calculation of the constant K, calculation of the viscosity coe�-
cient at any temperature

20. Determination of the sti�ness modulus using the dynamic
method

Torsional deformation

Forces acting tangentially to the surface of a solid body cause whip shifts of individual
elements and lead to shear or twist deformations. In a deformed body, there is an
imbalance between atomic forces, and as a result, elastic resistance forces appear. The
ratio of the tangential force Fs, to the surface S it acts on, is called the tangential stress
τ

τ =
Fs

S
, (20.1)
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Hooke's law, according to which the stress is proportional to the strain, in the case of
tangential stresses takes the form:

τ = Gφ, (20.2)

where w is the measure of angular deformation, and G - the sti�ness modulus of the
dimension Nm−2· rad−1.

As an example of a torsional deformation we consider a thin-walled cylinder subjected
to tangential forces applied to the upper base as shown in Fig. 20.1. The lower base
is �xed in place. The twist angle o can be expressed by rotating the upper base α.

Figure 20.1. Torsion of a thin-walled
cylinder

φ
s

l
=

r

l
α (20.3)

and the tangential stress, as de�ned in (20.1),
in the form

τ =
dFs

2πrdr
. (20.4)

After taking into account expressions (20.3) and
(20.4) in equation (20.2), we �nd the tangential
force dFs:

dFs =
2πGαr2

l
dr. (20.5)

and after multiplying the above equation by r
on both sides, we get the moment of force dM :

dM =
2πGαr3

l
dr. (20.6)

Under the conditions of static equilibrium, the
equation (20.6) can be read in two ways - taking

the moment of force as the cause and the deformation as the e�ect, or vice versa. In the
�rst case, the torsion by the angle α is the result of an external force with the moment
dM , while in the second - the moment of elastic force is the result of the existing
deformation.

The cylinder shown in Fig. 20.1 can be treated as an element of a full cylinder. The
moment of force twisting the cylinder base by the angle α is obtained by integrating the
contributions from the rings with radii from r = 0 to r = R.

M =
2πGα

l

R∫
0

r3dr. (20.7)

After integrating, we get the expression for the moment of force

M =
πGr4

2l
α. (20.8)

in which, apart from the sti�ness modulus G, there are quantities readily available for
measurement, so equation (20.8) can be used to determine the sti�ness modulus.
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Dynamic method

To determine the sti�ness modulus, the static (for thick bars) and dynamic (for thin
bars and wires) methods are used. In the dynamic method, the tested wire is attached
with its upper end to a �xed holder, and a vibrator is suspended at the lower end (Fig.
20.2). The vibrator consists of rods equipped with pins that enable the imposition of
additional loads.

When the vibrator is twisted an angle, there will be a moment of elastic forces in
the wire trying to restore equilibrium. When the vibrator is released it will vibrate.
Forces and moments of forces occurring in a stranded bar or wire have been considered
in detail in the previous section.

Equation (20.8) shows that the moment of force is proportional to the de�ection
angle, which is the basic property of harmonic motion. Thus, the motion of the vibrator
is harmonic motion and the period of this motion

T = 2π

√
I

D
, (20.9)

where: I - moment of inertia, D - steering moment (see chapter 14).

Figure 20.2. Device for determining
the sti�ness modulus by the dynamic

method

The driving moment is calculated from equa-
tion (20.8), taking into account that D = M/α

D =
πGr4

2l
, (20.10)

The moment of inertia of an unloaded vibra-
tor is usually di�cult to calculate directly and
therefore we will use a method to eliminate this
quantity. After placing additional rollers on the
vibrator arms, the moment of inertia will in-
crease by I1, and the vibration period will in-
crease

T1 = 2π

√
I + I1
D

, (20.11)

Equations (20.9) and (20.11) allow you to elim-
inate I I by squaring both equations and then
subtracting them both sides. After these opera-
tions, only the transformation that leads to the
expression of the driving moment in the form:

D =
4π2I1

T 2
1 − T 2

. (20.12)

Comparing equations (20.10) and (20.12) with each other, we can �nd the torsional
modulus:

G =
8πlI1

r4(T 2
1 − T 2)

, (20.13)
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where: l - wire length, r - wire radius, T - vibration period of the unloaded or preloaded
vibrator, T1 - vibration period of the vibrator loaded with known masses. The last
equation is the basis of the method of determining the sti�ness modulus and indicates
the quantities that we need to measure in order to calculate this modulus.

Additional moment of inertia I1 is obtained by placing cylinders of known mass on
the appropriate pins of the vibrator. If the distance of the roll axis from the vibrator
is d, the number of rollers N , and the mass of each m, then according to Steiner the
moment of inertia of these rollers is expressed by the formula:

I1 = NI0 +Nmd2, (20.14)

where I0 is the moment of inertia of a single cylinder about its axis of symmetry. For a
cylinder with radius R and weight m: I0 = (1/2)mR2.

Measurements:

1. Measure the length (l) of the wire to be tested. Note the measurement accuracy
(∆l).

2. Measure the wire diameter (ϕ) several times. Specify the measurement accuracy
(∆ϕ).

3. Take dimension of the vibrator to determine the distance of the pins from the axis
of rotation (d1, d2, d3).

4. Measure the diameters of subsequent rollers loading the vibrator (ϕw → R = ϕw/2).
Note the measurement accuracy (∆ϕw).

5. Pre-load the vibrator (e.g. with four weights). Measure the duration (t) of the ten
oscillations of the vibrator so loaded. Note the accuracy of the time measurement
(∆t).

6. Change the moment of inertia of the vibrator by adding subsequent loads. Each
time measure the duration of ten oscillations of the vibrator with added loads (td).

7. Take measurements for at least six mass distributions, taking care not to remove the
weights preloading the vibrator.

Report:

1. Calculate the average diameter of the tested wire (ϕ) and its accuracy (∆ϕ).
2. Determine the distance (d1, d2, d3) of the axis of the vibrator pins from its center.
3. Using the Steiner's theorem, calculate by what value (Id) the moment of inertia of

the vibrator changes in the case of subsequent loads relative to the moment of inertia
of the preloaded vibrator. I = NI0 +Nmd2i , where I0 is moment of inertia of single
weight with respect to its axis of symmetry, for cylinder of radius R and mass m:
I0 = (1/2)mR2, N - are the number of weights, di is distance of weight axis to axis
of vibrator, (where i = 1, 2, 3).

4. Calculate the sti�ness modulus for each mass distribution (Gd). Gd =
8πlId

r4(T 2
1 − T 2)

,

where l - length of vibrator wire, r- radius of wire, T - period of vibrations for empty
or pre-loaded vibrator, T1 - period of vibrations for loaded vibrator.
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Please note that Id = In − Ipre, where In is moment of inertia for n-th load of
vibrator (usually is necceasery to make n from 6 to 10 di�rent loads of vibrator) and
Ipre is the moment of inertia of preloaded vibrator.

5. Calculate the average sti�ness modulus (G) and its uncertainty (∆G).
6. Present the �nal result (appropriately rounded sti�ness modulus and its uncertainty).
7. Compare the obtained result to the table value for steel
8. Write down the �nal conclusions

Keywords:

• deformations dependence on stress, normal and tangential stresses,
• deformations depending on the type of stress,
• Hooke's law, sti�ness (torsion) module,
• cylinder and roller torsion,
• harmonic motion: moment of force and de�ection, period.
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21. Determining the capacitance of a capacitor by means of
relaxation vibrations.

Introduction

A capacitor is a system of two metal plates of any shape separated by a dielectric.
In the state of charge on each of the plates there is an electric charge Q of the opposite
sign, and there is a potential di�erence (voltage) U between the plates. The capacitance
of a capacitor is the ratio of charge to voltage

C =
Q

U
. (21.1)

The capacitance of a capacitor depends on its geometry, i.e. the shape, size and
distance of the plates, as well as the type of dielectric between them. The capacity of
capacitors with a su�ciently symmetrical structure (e.g. �at, cylindrical, spherical) is
described by simple formulas given in basic physics textbooks.

The capacitor is charged by connecting a source with electromotive force (EMF) ε
to a circuit with series-connected resistance R and capacitance C (in Fig. 21.1, switch
position a), while discharging - by disconnecting the source from the circuit (switch
position b).

Charge process

At any time of charging, there is a charge q on the covers, and a cur-
rent i in the circuit. According to the Kirchho� 2nd law, the potential
drops on the capacitor and on the resistor are compensated by the EMF

Figure 21.1. The RC circuit

ε = iR +
q

C
. (21.2)

After di�erentiating this equation
and taking into account the relation
i = dg/dt, we get

di

dt
+

1

RC
i = 0. (21.3)
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It is a di�erential equation in which we can separate the variables and then integrate
both sides of the equation. As a result of this procedure, we will obtain a solution in
the form of:

i = i0e
t

RC =
1

RC
e

t
RC , (21.4)

where io is the integration constant de�ned by the initial conditions. At the initial
moment of charging (t = 0) the charge on the capacitor plates is equal to zero and from
equation (21.2) it follows that then the current at io = ε/R.

The voltage on the capacitor Uc at any moment is ε − Ri and changes with time
according to the equation:

Uc = ε(1− e
t

RC ). (21.5)

After a su�ciently long time, the capacitor is fully charged. Mathematically we �nd
that Uc → ε when t → ∞ . In practice, we consider the capacitor charged after t = 5RC.

Discharge process

When the plates of the charged capacitor are connected directly with the resistor R
(switch in position b), the current will �ow through the resistor in the opposite direction
than when charging. In this case, the second law of Kirchho� takes the form:

Ri+
q

C
= 0. (21.6)

After considering again that i = dq/dt, we get the di�erential equation

R
dq

dt
+

q

C
= 0. (21.7)

The solution to this equation is the function:

q = q0e
t

RC , (21.8)

where q0 is the initial charge on the capacitor - this is the charge of the charged capacitor:
q0 = Cε.

We �nd the intensity of the current during discharge by di�erentiating the equation
(21.8)

i = − ε

R
e

t
RC . (21.9)

Dividing equation (21.8) by C, we �nd the voltage across the capacitor at any time of
discharge:

Uc = εe
t

RC . (21.10)

In the equations describing the charging and discharging of a capacitor, there is a
quantity RC having a time dimension. This quantity is called the circuit time constant
and determines the speed of both charging and discharging the capacitor. After the
time t = RC from the moment the expression exp(−t/(RC)) is started loading or
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unloading is 1/e (e = 2.71828). The corresponding equations given above show that the
charging or discharging current and the discharge voltage with the RC time decrease
e-fold compared to the initial value, while during charging, the voltage on the capacitor
after this time reaches (1− 1/e) values fully charged.

Relaxation vibrations

If we connect a neon lamp to the RC circuit in parallel to the capacitor (Fig. 21.2),
periodic, asymmetrical voltage increases and decreases on the capacitor will occur, called
relaxation vibrations.

A neon lamp, also known as a stabilivolt, is a glass bulb �lled with neon gas, under a
pressure of about 20 mm Hg, containing two metal electrodes with low work output, e.g.
barium. If a small voltage is applied to the neon tube, the current does not �ow through
it due to the low conductivity of the gas. When the value of Uz (ignition voltage) is
exceeded, the gas is ionized, its glow is visible, a current �ows through the neon lamp
and the voltage on the capacitor decreases. The started avalanche ionization continues
at slightly lower voltages - it stops only when the voltage drops below the value known
as the extinction voltage Ug.

We use the described properties of the neon lamp to obtain relaxation vibrations
(21.2). The capacitor C charges from the DC source through the resistance R. The
voltage on the capacitor plates increases exponentially, according to equation (21.5).
When the voltage reaches Uz, the N neon lamp lights up. Since the resistance of the
lightening neon lamp is very small, the capacitor (described by equation 21.10) is quickly
discharged to the voltage Ug. After the neon lamp turns o�, the capacitor is charged
again and then discharged. The described processes repeat cyclically.

Figure 21.2. The circuit for generating relaxation vibrations (a) and the voltage waveform on
the capacitor (b)

A single period consists of two parts: the voltage rise time T , determined by the
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capacitance C and the resistance R, and the time T1, in which the voltage across the
capacitor decreases, determined by the same capacitance and resistance of the neon tube.
Due to the fact that the resistance of the glowing neon lamp is much lower than the
resistance R, the discharge time is a small fraction of the entire period and in most cases
we can assume that the relaxation vibration period is equal to the capacitor charging
time from the extinguishing voltage Ug to the voltage ignition Uz.

In the �rst charging cycle, the U voltage will be reached after t0. Equation (21.5)
for the time t0 takes the form:

Ug = ε

(
1− e

t0
RC

)
. (21.11)

We can write an analogous equation for the time t0 + T , when the voltage on the
capacitor plates is Uz:

Uz = ε

(
1− e

t0+T
RC

)
. (21.12)

From the last two equations we get:

t0 = RC ln ε−RC ln(ε− Ug),

t0 + T = RC ln ε−RC ln(ε− Uz).
(21.13)

After subtracting the above equations by sides, we �nd the period T :

T = RC ln
ε− Ug

ε− Uz

. (21.14)

The expression ln[(ε−Ug)/(ε−Uz)] is a constant quantity for a certain voltage and a
certain type of neon lamp. If we denote them with the symbol K, then equation (21.14)
will take the form:

T = RCK. (21.15)

We can see that the period of the relaxation vibrations is directly proportional to the
capacity and resistance.

Capacitance measurement principle

Figure 21.3. System for determining capaci-
tance on the basis of relaxation vibrations

The formula (21.15) makes it possi-
ble to determine the capacitance if we
can �nd the period of relaxation vibra-
tions, the resistance of the circuit and
the constant K. The measuring circuit
is presented in Fig. 21.3.

The period is measured with
a timer, observing the �ashes of
the neon lamp. We usually do not
measure resistance - we use resistors
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marked with know value of R. In order to determine the constant K, instead
of the tested capacitor, we take a series of capacitors with known capacities and
measure the periods of relaxation vibrations. After measuring the period, we have all
the quantities that determine the constantK and calculate it using the equation (21.15).

Measurements and Report:

Note: The capacitor measuring system has been additionally equipped with a digital
oscilloscope connected to the computer. The oscilloscope allows you to measure the
period of �ashes (without using a stopwatch). The oscilloscope user manual is on the
measuring stand. The lecturer decides whether �ash periods will be measured using a
stopwatch or oscilloscope.

1. At a certain resistance, change the reference capacity in steps. For each value,
measure the time of 10-20 �ashes and determine the period. Select the values of
resistance and capacity so that the �ashes are easy to count.

2. Repeat point 1 for other resistance values. The total number of combinations of
resistance and capacity should be 20-30.

3. For each RC value, calculate the K constant, then its mean value and the standard
deviation of the mean.

4. Take period measurements for unknown capacitors and calculate the capacitance of
each.

5. Calculate the errors of each capacity, the easiest way is using the logarithmic dif-
ferential method. Take the value calculated in point 3 as the error of the constant
K.

6. Round o� errors and results.
7. List the determined values and their errors as the �nal result.
8. Write down the �nal conclusions

Keywords:

• Electric capacity, capacitors
• Capacitor charging: Kirchho�'s law, change of current and voltage over time
• Capacitor discharge: Kirchho�'s law, change of current and voltage over time, time
constant

• Neon lamp
• Relaxation vibrations: mechanism, graph, period
• Finding the constant K, determining the capacity of Cx
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22. Investigation of the transformer

Exercise goals:

• Determining the transformer ratio
• Determining the dependence of voltage and transformer e�ciency of current in the
secondary winding of loaded transformer

Introduction

AC - Alternating current

The 50 Hz alternating current is commonly used to power domestic and industrial
equipment. The dependence of alternating voltage of time t can be written with the
following equation

u = U0 cos(ωt), (22.1)

where u is the temporary value of voltage, U0 - peak voltage and ω - circular frequency.
The cosine function argument is called a phase. In the closed circuit, the current with
the same character of changes will �ow, but its initial phase might be di�erent from the
voltage phase

i = I0 cos(ωt), (22.2)

where i is the temporary current value, I0 - current peak and ϕ - voltage and current
phase di�erence. The phase di�erence depends on the type and value of elements in the
circuit: resistance, inductance and capacity of the circuit. If there is only resistance in
the circuit, then ϕ = 0, then there is no phase shift between voltage and current. If the
circuit is inductive, the voltage is ahead of the current and the phase di�erence is within
the range < −π/2, 0). In the circuit which character is capacitive, the current is ahead
of the voltage, and ϕ is in the range (0, π/2 >. The power generated in the alternating
current circuit is expressed by the formula

P =
1

2
U0I0 cos(ϕ), (22.3)

The same power P = UI would be created in the case of a direct current �ow of voltage
U = U0/

√
2 and current I = I0/

√
2 while ϕ = 0. The U and I values are called e�ective

voltage and e�ective intensity. By substituting e�ective values to equation (22.3), we
get

P = UI cos(ϕ), (22.4)

As can be seen in the case of alternating current, the power in the circuit does not
only depend on the voltage and current, but also on their phase shift, which causes
power losses. In electrical engineering, the expression cosϕ is called the cosine of the
losses angle. In practice, we use e�ective voltage and current values. We read such
values on meters. However, we must be aware that the voltage in the sockets of our
homes varies in the range of 0 - 325 V (230 V is the e�ective voltage value).
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Transformer

The transformer is a device commonly used in power engineering, electrical engi-
neering, electronics, welding, etc. It serves to convert the voltage and the intensity
of alternating current into other voltage and current without changing the frequency
of the current. For example, transformers enable the exchange of high voltage used
in power transmission lines (400 kV) for much lower voltage (230 V) used in home
devices. Transformers, depending where they are used, have a diverse structure, and
the theory connected with how these devices work is very complex. In this exercise, we
will only learn basic, often simpli�ed, informations related to this device. The trans-
former consists of a ferromagnetic core and at least two windings (coils) wounded on
it (Fig. 22.1). Primary (supplying) and secondary (receiving) windings are electrical
circuits of the transformer, while the transformer's core is a magnetic circuit. The way
how transformer works is based on the phenomenon of electromagnetic induction. We
distinguish three basic transformer operation states: idle state, short-circuit condition
and loaded state.

Figure 22.1. Overview of the transformer construction diagram a) idle state, b) loaded state

Idle state of the transformer

The idle state of the transformer is in a situation where the primary winding is
connected to an alternating current source, and the secondary winding is open (Fig.
22.1). Alternating current �owing in the primary winding induces in the core an alter-
nating magnetic �ux Φ. According to Faraday's law of induction under the in�uence
of changing magnetic �eld penetrating through the primary and secondary windings,
temporary electromotive forces are induced in them of values

e1 = −n1
dΦ

dt
, e2 = −n2

dΦ

dt
(22.5)

where e1 and e2 are electromotive forces induced in primary and secondary windings,
n1 and n2 are the number of windings in the primary and secondary windings, dΦ/dt is
the derivative of a magnetic �ux Φ after time t (the rate at which the �ow changes in
time). Usually resistances of the transformer windings are negligible, so in the idle con-
dition of the transformer we can write that the temporary voltage drops on the primary
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and secondary windings are equal to the values induced in them by the electromotive
forces

u1 = e1, u2 = e2 (22.6)

where u1 is temporary voltage of the current source connected to the primary winding
and u2 is temporary voltage drop at the ends of the secondary winding. By using
equations (22.5) and (22.6), the relation can be written

u1

u2

=
n1

n2

(22.7)

By replacing the instantaneous voltage drops on the primary and secondary windings
with the corresponding e�ective voltages, we can �nally write

U1

U2

=
n1

n2

= K (22.8)

The number K is called the transformer's transmission. Looking at equation (22.8)
we can see that, if we choose the appropriate ratio of the number of primary and
secondary windings, we can obtain an increase or decrease in voltage at the output of
the transformer in relation to the supplying voltage.

Transformer short-circuit

The transformer's short-circuit condition (maximum load state) is in the case when
the primary winding is connected to an alternating current source and the secondary
winding is short-circuited. This corresponds to the situation in Fig. 22.1b, where the
regulated resistor (receiver) is set to R = 0. Current i1 �owing in the primary winding
induces changing magnetic �ux in the core. In the secondary winding under the in�uence
of induction a temporary current i2 appears. If we omit losses in the transformer, we can
conclude, using the principle of energy conservation, that the power transmitted by the
source to the primary winding U1I1 is equal to the power transferred to the secondary
circuit U2I2.

U1I1 = U2I2 (22.9)

where U1, U2 are e�ective voltages, and I1, I2 are e�ective currents in the primary and
secondary windings, respectively. Using the above dependence and equation (22.8), we
can write

I1
I2

=
n2

n1

=
1

K
. (22.10)

Transformer load condition

So far, we have discussed two extreme cases of transformer operation status, when
the secondary winding was open (receiver resistance R = ∞) and when it was shorted
(receiver resistance R = 0). The transformer load state is referred to when an AC power
source is connected to the primary winding and the secondary winding is connected
to a receiver with resistance R ̸= 0 (Fig. 22.1b). In this situation, the ratio of the
voltages in the primary and secondary windings is not equal to the transformer ratio,
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because in the secondary winding circuit there is a voltage drop on the resistance of
the secondary winding associated with the current �ow. When we examine the voltage
in the secondary winding, we observe that it decreases when we increase the value of
current �owing in this winding (drop in the resistance of the receiver).

Transformer e�ciency

The above considerations concern the so-called ideal (lossless) transformer. In a
real transformer there are losses caused mainly by: winding resistance, eddy currents
generated in the core, hysteresis of ferromagnetic and scattering of the magnetic �eld
outside the core. Designers try to prevent these e�ects by: using high-quality copper
wires in the windings, creating transformer cores from a series of isolated ferromagnetic
sheets, optimizing the shape of the core and windings depending on the transformer use.
An important parameter of the transformer is its e�ciency calculated as the ratio of the
power P2 to the power taken from the source P1. To show the η e�ciency in percent,
we use the equation

η =
P2

P1

· 100% . (22.11)

Remembering that we are dealing with alternating current, and the circuits have
an inductive character, the formulas for powers P1 and devoted P2 can be written in
accordance with equation (22.4) as

P1 = U1I1 cosϕ1 , P2 = U2I2 cosϕ2 , (22.12)

where ϕ1 and ϕ2 are the angles of the phase shift between voltage and current in the
primary and secondary circuits. Assuming with an extremely big approximation that
ϕ1 = ϕ2, we can write an approximate formula for the e�ciency of the transformer

η =
U2I2
U1I1

· 100% (22.13)

In order to obtain the maximum e�ciency of the transformer, it should be properly
designed taking into account the electrical parameters of the receiver. Well-designed
transformers of very high power achieve e�ciency of 97-99%, while in the case of simple
transformers of low power an e�ciency is around 80%.

Measuring system

Figure 22.2. Scheme of the electric measuring
diagram

A measuring system consisting of
an adjustable AC power supply, trans-
former, slider resistor, switch, two volt-
meters and two ammeters (Fig. 22.2)
was designed for transformer testing.
The transformer windings have taps
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enabling selection of 200, 400 or 600 turns. The voltage of the power source can be
changed in the range of 1-12 V. The resistor acting as a receiver enables resistance
changes in the range of 0-34 Ω.

Attention! There is a possibility of strong current pulses in the circuit during
connecting and switching o� the transformer windings. Therefore, the change in the
number of transformer windings and the switching on and o� of the power supply of
the circuit should be carried out with a minimum voltage at the power source (1 V).

Measurements:

A. Transformer tests in the idle state - determination of the transformer
ratio

1. Connect the circuit according to the diagram in �gure 22.2, selecting the number of
turns n1 = 400 and n2 = 600. Switch W turn to position - disconnected (0).

2. Set the power supply voltage adjustment knob to 1 V and turn it on.
3. Turn on the multimeters and additionally press the blue buttons on them to select

the measurement of alternating currents and voltages (AC mode).
4. Change the supply voltage every 1 V in the range 1 - 10 V, each time saving voltage

U1 and U2.
5. Repeat the measurements for the number of secondary turns n2 = 400 and n2 = 200

(when n1 = 400).
6. Plot the coordinates of dependences of secondary voltage and primary voltage U2 =

f(U1) on one coordinate system
7. Using the obtained measurement results and equation (22.8), determine the tested

transformer transformations and then their average values and measurement uncer-
tainties.

8. Determine the theoretical values of the transformer ratio from the ratios of the num-
ber of windings on the primary and secondary windings (equation 22.8). Compare
experimental and theoretical results.

B. Transformer tests in the short-circuit condition

1. Set the power supply voltage to 1 V, turn the W switch to the position - switched
on (1) and the resistor slider to the 0 Ω position.

2. Take measurements of the currents I1 and I2 like in the previous tests ( n1 = 400 and
n2 = 600, 400, 200). Each time after the measurements, the voltage on the power
supply should be set to 1 V.

3. On one coordinate system, plot the dependence of the secondary current intensity
of the primary current I2 = f(I1).

C. Transformer tests in the loaded state

1. set n1 = 400, n2 = 200;
2. set power voltage to 4 V and the "W" switch to "1";
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3. Perform 12 - 15 measurements of U1, I1, U2 and I2 values, changing the receiver's
resistance in the range of 0 - 34 Ω. The resistance in the beggining should be changed
every 1 Ω, then every 2 Ω, and in the end every 4 Ω.

4. Switch W switch to position - disconnected (0), then write values U1, I1, U2 and I2
(in this case R = ∞).

5. Set the PSU controller in the 1 V position, and then turn o� the PSU.
6. Plot the dependence of voltage of the current in the secondary circuit U2 = f(I2).
7. Using the measurement results and equation (22.13), calculate the transformer ef-

�ciency for individual measurements, then plot the dependence of the transformer
e�ciency of the current intensity in the secondary winding η = f(I2).

8. Write down the �nal conclusions

Keywords:

• working principle of an electrical transformer,
• alternating/direct current (AC/DC),
• power rating, ratio and e�ciency of a transformer,
• load/no-load state, open/short circuit.

23. Determining the dependence of conductivity on
temperature for semiconductors and conductors

Introduction

According to Ohm's law in its most general form, the current density anywhere in a
conductive material is directly proportional to the electric �eld strength.

j = σE. (23.1)

In the above equation, j is the current density (the ratio of the current to the
cross-sectional area), E - the electric �eld strength. The proportionality factor o is
called electrical conductivity. The conductivity value is directly determined by the
concentration and mobility of the charge carriers.

σ = e(nµe + pµp). (23.2)

The concentration of n electrons and holes p is de�ned as the number of these carriers
per unit volume, and the mobility (electrons - µe, holes - µp) is the ratio of the velocity
of lifting to the electric �eld strength.

In semiconductors, both concentration and mobility depend on the type of material
and temperature, so conductivity also depends on these parameters. In conductors
(metals) the concentration of carriers (only electrons are important) is very high and
does not depend on temperature, and the temperature dependence of conductivity is
determined by the decrease in mobility with increasing temperature. This relationship
is usually expressed by resistance (R ≈ 1/σ) and for metals it has the form:

R = R0[1 + α(T − T0)], (23.3)
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where R0 is the resistance at T0 and α is the mean temperature coe�cient of resistance.
Formula (23.3) should only be used in a not too large range of temperature values, since
the coe�cient α changes with temperature.

In semiconductors, the current carriers are electrons in the conduction band and
holes in the valence band. The electrons are delivered to the conduction band either
from the valence band (in intrinsic semiconductors) or from doping-donor levels (in
n-type semiconductors). On the other hand, holes are formed in the valence band after
the electron passes either to the conduction band or to the doping-acceptor levels (in
p-type semiconductors).

The electronic transitions in semiconductors are shown in Fig. 23.1. The number of
electrons going to a higher energy level depends exponentially on the di�erence in levels
and on temperature and is expressed in the case of intrinsic semiconductors:

n = n0se
−Eg
2kBT , (23.4)

where: Eg - bandwidth (see Fig. 23.1), kB - Boltzmann constant, T - absolute temper-
ature.

Figure 23.1. Bands and energy levels in intrinsic semiconductors (a), n semiconductors (b)
and p type semiconductors (c); full circles - electrons, empty circles - holes, Ea, Ed - energy of

acceptors and donors

Due to the fact that each electron in the conduction band has a free hole in the
valence band, the concentrations of both types of carriers are the same: n = p. In the
case of doped semiconductors, the carrier concentrations are determined by the energy
di�erences Ed and Ea and by the temperature:

n = n0de
−Ed
2kBT , n = n0ae

−Ea
2kBT (23.5)

As the temperature rises, the number of carriers coming from the bellows levels also
increases until all electrons leave the donor levels or �ll the acceptor levels. Further
increasing the temperature does not lead to an increase in the concentration of carriers.
In this temperature range, the number of intrinsic carriers is still very small - so we
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observe the phenomenon of impurity saturation. Only at higher temperatures, carri-
ers from interband transitions begin to dominate and concentration begins to increase
rapidly.

The mobility of carriers, as in metals, decreases with temperature. However, these
changes are much slower than changes in concentration, so we can assume that the
conductivity depends on the temperature as well as the concentration of the carriers.

After taking into account equations (23.4) and (23.5) in formula (23.2), we can
express the temperature dependence of the conductivity in the form:

σ = C1e
−Eg
2kBT + C2e

−Edom
2kBT , (23.6)

where by Edom we mean one of the quantities Ed or Ea, depending on the type of
semiconductor. Constants C contain mobility and the size of no. At a su�ciently low
temperature, the �rst component in formula (23.6) may be neglected, while at high
temperature, when the impurity levels become saturated, the second component may
be neglected. In the �rst case

σdom = C2e
−Edom
2kBT , (23.7)

in the second
σsam = C1e

−Eg
2kBT . (23.8)

Both of the above equations have the same mathematical structure, so it's convenient
to replace them with one common equation

σ = Ce
−EA
kBT . (23.9)

where EA = Eg/2 for intrinsic conductivity or EA = Edom/2 - for dopant conductivity.
The magnitude of EA is called activation energy.

The temperature dependence of the semiconductor's conductivity is most conve-
niently analyzed by plotting this dependence on a semi-logarithmic scale. After loga-
rithm the formula (23.9) we get the expression:

lnσ = lnC − EA

kB
· 1
T
. (23.10)

If we now put the reciprocal of the temperature on the abscissa and lnσ on the ordinate
axis, then the graph of the temperature dependence of the semiconductor will be a
straight line with the slope coe�cient EA/kB. In a wide range of temperature values,
including intrinsic and intrinsic conductivity, the graph will appear as a broken line
(Fig. 23.2). The sections with di�erent slopes correspond to di�erent activation energies.

Measurements and calculations

Old description - introduction to measure the resistance R by compensa-
tion method
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In order to determine the searched relationships, we measure the electrical resistance
of a wire and a semiconductor (thermistor) at di�erent temperatures. The tested little
ones are placed in the ultrathermostat and their resistances are measured with the
Wheatstone bridge. The structure of the Wheatstone bridge is shown in �g. 23.4. The
main operation when using the bridge is to select the resistance R (it consists of a series
of resistors in a decade system) in such a way as to obtain an equilibrium of the bridge
consisting in resetting the current �owing through the galvanometer G. The condition
for equilibrium is the equality of the electric potentials in the points B and D. When
counting the potential in relation to the point C, we will express the above condition
as:

Rix = R2i. (23.11)

A similar condition exists for the ABD branch:

Rxix = R1i. (23.12)

We divide both equations side by side and �nd the resistance we are looking for:

Rx =
R1

R2

R. (23.13)

Figure 23.2. Logarythm of conductivity as a
function of the reciprocal of temperature

Figure 23.3. Structure of a laboratory
Wheatstone bridge

The values of the resistors R1 and R2 are a sequence of powers of 10, e.g. 1, 10, 100,
1000. These resistors allow the resistance to be measured over a very wide range.

In order to �nd the appropriate settings for R1 and R2, �rst set the maximum values
of R1 and R2. Then we change the Ri values from the minimum to the occurrence of a
change in the direction of the galvanometer de�ection. If the de�ection direction does
not change in the whole range, set the lowest value of R2 and change R1 again from the
minimum until the value at which the de�ection direction changes.
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After �nding the settings of R1 and R2, we leave them unchanged until the end of
the measurement of a given resistor, and further adjustment is carried out using the
resistance R. Using the decade resistance knobs, starting with the largest, we narrow
the range in which the galvanometer de�ection changes direction, until the galvanometer
de�ection is zero.

The 0.1G button turns on the galvanometer by the safety resistance R, which reduces
the sensitivity of the galvanometer. In order to balance the bridge more precisely, we
press the G button and repeat the activities related to reaching zero excursion, without
changing the greatest decade. After achieving the equilibrium, we turn o� the power
source and check the zero indication of the galvanometer.

The design and operation of the ultrathermostat are described in chapter 7. Instead
of the ultrathermostat, the resistors can be placed in a water bath and heated electrically.

Present description - introduction to measure the resistance R by multi-
meter H 2105/B

The measurements of resistance of conductor and semi-conductor is done directly by
the multimeter H2105/B (see Figure 23.4). In �gure 23.4 are presented two multimeters:
on the left for measure the semiconductor resistance, on the right side the conductor
resistance. Both multimeters are working in �eco� mode which is use to safe energy
consumption. Every 15-20 minutes the multimeters are switch o�. In such case you need
to press the red button on the left side below the digital displayer. In semiconductor
case the range is set to 2 MΩ and show the value of R = 0.227 MΩ = 227 kΩ. When
the temperature of semiconductor reach the 25-28 ◦C, you can change the range on
multimeter for 200 kΩ and continue the measurements up to temperature 90◦C. In
the conductor case the multimeter operate on the range of 200 Ω in the full range
of temperature and in Fugure 23.4 present the value of R = 108.5 Ω. To estimate the
uncertainty of R reading the Table 5.1 present the typical accuracy values of multimeter.

Table 5.1. Accuracy of resistance measurement with the H2105/B meter

Range Resolution Precision

200 Ω 0.1 Ω ±(0.8% of reading + 0.3) Ω
2 kΩ 1 Ω ±(0.8% of reading + 2.0) Ω
20 kΩ 10 Ω ±(0.8% of reading + 20) Ω
200 kΩ 100 Ω ±(0.8% of reading + 200) Ω
2 MΩ 1 kΩ ±(0.8% of reading + 2.0) kΩ
20 MΩ 10 kΩ ±(1.0% of reading + 50) kΩ

For the measured values of R presented in Fugure 23.4 the accuracy of resistance
can be expresed as:
semiconductor R = 0.2270± 0.0038 MΩ or R = 227.0± 3.8 kΩ,
conductor R = 108.5± 1.7 Ω.
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Figure 23.4. multimeter H 2105/B

Equation (23.10) can be used to �nd the EA activation energy. If we apply the
relation σ ∝ 1/R, we get the equation:

ln
1

R
= lnC − EA

kB
· 1
T
, (23.14)

which in the graph ln(1/R) = f(1/T ) represents a straight line with a slope coe�cient

areg =
EA

kB
, (23.15)

We can �nd the same slope factor from linear regression. When it is known, then the
last equation makes it possible to calculate EA.

Measurements:

1. Measure resistanceR for both conductor and semiconductor in the temperature range
from the room temperature up to 90◦C with temperature change step 5◦C. Use the
digital multimeters for the measurements of resistance. Please set the correct range
of multimeters for conductor and semiconductor.

Report:

1. Plot R = f(Temp.) for both conductor and semiconductor at the same graph for
comparison; feel free to use di�erent scales if needed;

2. For a semiconductor: calculate ln(1/R) and 1/Temp. and plot those functions; tem-
perature need to be expressed in Kelvins;

3. Using linear regression determine the slope coe�cient areg and its error ∆areg;
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4. Try to determine the energy doping level according to the formula: areg = EA/kB,
where: EA � activation energy, kB � Boltzmann constant. The doping level can be
calculated approximately; the function ln(1/R) = f(1/T ) (see above) is linear and
we can use the linear regression to determine the slope coe�cient areg. Regression
can be done by using e.g. gnuplot or an o�ce suite such as Libre O�ce. Having
areg, we can �nally calculate EA from the relation areg = EA/kB; (see Table B.1 for
kB value)

5. Try to calculate complex error of EA given above (exact di�erential);
6. Round the calculated values and present the �nal form of the result EA [in units of

J and eV].
7. Write down the �nal conclusions

Keywords:

• Ohm's law, conductivity, concentration, mobility, factor temperature resistance
• Free carriers in an intrinsic and doped semiconductor
• The dependence of conductivity on temperature
• Wheatstone Bridge
• Calculation of the position of the admixture level or the width of the forbidden gap,
electron-volt (eV)

24. Investigation of the in�uence of the magnetic �eld on a
conductor with current

Exercise goals:

• Getting to know the phenomenon of in�uence of magnetic �eld on the conductor
with the current

• Determining the dependence of electrodynamic force on the current �owing in the
wire frame and of the amount of frame windings

• Determination of an average value of an induction of the magnetic �eld between the
poles of a magnet

Introduction

The impact of a magnetic �eld on a conductor with the current is a common
phenomenon used in technology. An example of such an application are electric motors
that, among the others, are used in trams, washing machines, hair dryers, car wipers,
toys. Ability to do work by an electric motor comes from the emergence of a force
(the so-called electrodynamic force) acting on the conductor with the current in the
magnetic �eld. Before we start discussing about an electrodynamic force, let's start
with a force and how is it acting on a charged molecule moving in a magnetic �eld.
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Lorentz force

In many experiments with molecules having an electric charge moving in a magnetic
�eld, a force that caused bending of their track was observed. Dutch physicist Hendrik
Lorentz was the �rst to write down the following formula describing this force (the
so-called Lorentz force)

F⃗L = q(v⃗ × B⃗), (24.1)

in which: q - particle charge, v⃗ particle velocity vector, B⃗ magnetic �eld induction
vector. By writing down the same formula in scalar form, we get the value of the force
acting on the molecule

FL = qvB · sinα, (24.2)

in which: α is angle between v⃗ and B⃗ vectors. By analyzing formulas (24.1) and (24.2),
it is easy to see that the FL force equals zero when the charged molecule is not moving
or moves along the direction of the magnetic �eld lines, while the maximum is when the
molecule moves perpendicular to the direction of the magnetic �eld lines. The direction
of Lorenz's force is always perpendicular to the plane created by v⃗ and B⃗ vectors and
the orientation depends on the charge sign (Fig. 24.1a).

Electrodynamic force

The consequence of the Lorentz force is the force acting in the magnetic �eld on
the conductor with the current. Fig. 24.1b shows a part of the conductor in which the
current �ow is caused by the free electrons movement. In the section of length of l, at a
given moment, n electrons with charge e and average velocity of lifting vu the Lorentz
force acts on each electron (Fig. 24.1a, b) with a value

FL = evuB · sinα. (24.3)

The total force acting on the charges in a segment of conductor of the length l equals

FED = nevuB · sinα. (24.4)

The sum of free charges in the conductor section is q = ne, and the �ow time of the
electron through the segment of length l is t = l/vu, so using the relation on the current
I = q/t, we get the equation

I =
nevu
l

. (24.5)

Based on the formulas (24.4) and (24.5), the relation can be written

FED = IlB · sinα, (24.6)

or in vector form
F⃗ED = I (⃗l × B⃗). (24.7)
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Formula (24.6) describes the value of electrodynamic force. The vector l⃗ has a direction
and an orientation in the direction of the current �ow in the conductor (this �ow is
opposite to the direction of electron motion). The angle α in formula (24.6) is the angle
between the vector of the conductor section l⃗ and the magnetic �eld induction vector
B⃗ (Figure 24.1c).

Figure 24.1. a) shared orientation of vectors: v⃗ - velocity of charged molecule, B⃗ - magnetic
induction and F⃗L - Lorentz force, b) direction of force acting on individual electrons in a
section of conductor with current placed in a magnetic �eld, c) direction and orientation of
electrodynamic force F⃗ED acting on section of the conductor with current of intensity I (arrow

under I means direction and orientation of current)

Description of the experiment setup

On the measuring stand (Fig. 24.2) there is a horseshoe magnet that generates a
very strong magnetic �eld (Note: Do not bring metal objects or electronics close!).
Above it, on a rotary axis, a rectangular wire frame was hung so that its bottom side
was between the poles of the magnet. The frame, which was created from coiling 25
windings of a copper wire, has choice of 5, 15 and 25 windings. This allows to connect
a power source to 5, 10, 15, 20 or 25 frame windings depending on how the wires are
connected. The source of current in the circuit is the regulated DC power supply. The
electrical circuit also includes: an ammeter that allows precise measurement of the
current and a resistor that is protecting the frame from overheating. A miniature laser
was attached to the frame, the ray of which serves as an indicator enabling reading on
the scale under the frame.

Method of determining electrodynamic force

In order to determine the electrodynamic force acting on the bottom side of the
frame, we need to consider moments of forces occurring after the frame is leaned out
from the equilibrium position. These moments will be related to the forces of: gravity
and electrodynamics. Figure 24.3a shows schematically a rectangular frame with sides



5. Electromagnetism 99

Figure 24.2. Scheme of the exercise setup. In the above example, the current �ows through 10
frame windings (15 - 5 = 10)

of length a and b de�ected from the equilibrium position by angle Φ. Middle of mass
of three sides are marked on them mb and ma. Figure 24.3b shows the gravitational
force acting on the center of mass of individual sides and the electrodynamic force. In
addition, the arms vectors r associated with particular forces are marked.

Figure 24.3. The wire frame a) frame scheme with mass centers of individual sides marked, b)
strength and force arm vectors
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For the frame to stay in balance, the moments of forces acting on it should balance
out each other

r⃗ × F⃗g1 +
1

2
r⃗ × F⃗g2 +

1

2
r⃗ × F⃗g2 + r⃗ × F⃗ED = 0. (24.8)

The values of gravitational forces can be calculated by multiplying the mass of individual
sides of the framema,mb by gravitational acceleration g (Fg = mg), while the arm vector
r is equal to the side length b. Using the above equations and trigonometric relations
we can write the scalar form

(b sinϕ)mag + 2(
b

2
sinϕ)mbg − (b sin(90◦ − ϕ))FED = 0. (24.9)

After transformations, we obtain the following formula for electrodynamic force

FED = (ma +mb)g · tanϕ. (24.10)

Because the mass m of the entire frame is equal to the sum of masses of its individual
sides m = 2ma,+2mb, we can ultimately write

FED =
1

2
mg · tanϕ. (24.11)

Figure 24.4. The Scheme helpful
to determination of tanϕ

Given the mass of the frame, the acceleration of
the earth and the tangent of the angle of de�ection
of the frame makes it possible to determine the elec-
trodynamic force. In the described exercise, we will
use a beam of light emitted by a laser and a scale
with a millimeter scale to determine tanϕ (Figures
24.2 and 24.4).

In Figure 24.4 it can be seen that tanϕ is equal
to the ratio of the length of segment x read from
the scale to the distance of the axis of rotation from
the center of the scale d. Thus, the value of the
electrodynamic force is equal to

FED =
1

2
mg

x

d
. (24.12)

It is easy to notice that the quantities m, g and
d are constant, so by entering the factor c = mg/2d,
we can ultimately write that

FED = cx. (24.13)

It is possible to see that the electrodynamic force is directly proportional to the
indications on the x scale. Experimental proportionality factor c = (2.65± 0, 05) N/m.
In the above considerations, it was assumed that the moment of gravitational force
acting on a miniature laser is negligibly small.
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Determination of induction of a magnetic �eld value between a magnet
poles

In the described experiment, it can be seen that the current �ow direction in the
lower side of the frame is perpendicular to the direction of the magnetic �eld lines
(α = 90◦). The formula (24.6) can therefore be written in the form

FED = IlB. (24.14)

where l is the total length of the conductor with the current interacting with the magnetic
�eld. This length can be determined by multiplying a number of windings and a length
of the lower side of a frame, l = na, where a = (13, 0 ± 0, 2) cm. To determine the
average value of induction of a magnetic �eld interacting with a lower side of the frame,
we can use equation

FED = BnaI. (24.15)

By substituting y = FED, x = I and areg = Bna in the above equation, a linear
relationship of type y = aregx + b is obtained. It is a linear relation where the value of
areg is directional ratio of straight line. By plotting the dependency of an electrodynamic
force as a function of a current �owing through the frame: FED = f(I),a straight line
should be obtained. Applying the linear regression method to a graph obtained this
way, one can determine the slope modulus of a areg line and then, using known values
of n and a, determine value of magnetic �eld induction B. The calculated value of
induction of the magnetic �eld is actually a certain average value, because the magnetic
�eld in which moves the bottom side of the frame is not completely homogeneous over
the entire length of the side.

The course of the exercise

A. Determination of dependence of electrodynamic force on the intensity
of current �owing through frame winding FED = f(I).

1. Connect the circuit according to the diagram shown in Fig. 24.2, selecting 5 frame
windings (wires connected to inputs 0 and 5). Make sure that the multimeter knob
is set to the ammeter position, then turn on the power supply and the laser.

2. By adjusting the power supply, increase the current �owing through the frame wind-
ing so that the position of the laser spot changes every 1 cm. Each time, write
the position of the spot on the scale (1 - 10 cm) and the corresponding intensity of
current values. Set the power supply voltage to zero, change the wires in places and
repeat the measurements for the opposite direction of the current �ow.

3. Connect wires in di�erent combinations, repeat measurements from point 2 for the
number of windings 10, 15, 20 and 25.

4. Using the equation (24.13), calculate the FED electrodynamic force corresponding
to the individual frame de�ections.

5. On the common graph, plot the dependence of the electrodynamic force on the
intensity of the current �owing through the windings of the frame FED = f(I).
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6. Note the conclusions. Warning! After each completed measuring series, set the
voltage of the power supply to zero!

B. Determine the electrodynamic force as a function of coil turns, FED =
f(n)

1. Using the obtained FED = f(I) graphs, read approximate FED values for one con-
stant current value in the range of 0.15 - 0.25 A (for example 0.2 A).

2. For I = const plot the dependence of electrodynamic force on the number of frame
windings FED = f(n) .

3. Note the conclusions.

C. Determine the magnetic �eld induction B between the magnetic poles

1. Select the FED = f(I) diagram closest to the straight line and then, using the linear
regression method, determine its slope areg factor and error.

2. Using the data and the formula (24.15), determine the value of magnetic �eld induc-
tion (B = areg/na).

3. Check the units for all physical quantities and calculate the measurement error of
the calculated induction of the magnetic �eld (logarithmic or absolute di�erential
method).

4. Write down the �nal conclusions

Keywords:

• magnetic �eld,
• Lorentz force,
• the electrodynamic force.

25. Determination of the Planck constant and output work
based on photoelectric e�ect

Introduction

Generally, no electric current �ows in an electrical circuit comprising a voltage source
and two metal plates separated by a vacuum layer. However, if a plate with a negative
potential is illuminated, a current will appear, called a photocurrent - the greater, the
stronger the lighting will be. This phenomenon is called photoelectric. His research
showed that:

• microscopically the phenomenon consists in knocking out electrons from the metal
surface by the incident light, - photocurrent appears immediately after the exposure
of the metal (after ≈ 10−9s);

• photocurrent intensity, i.e. the number of electrons emitted per unit time, it is
proportional to the illuminance;

• photoelectron energy does not depend on the illuminance; it is proportional to the
oscillation frequency of the light wave;
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• Photocurrent appears only when the radiation frequency exceeds a certain limit.

The above properties can only be explained at the microscopic level on the basis of
the quantum theory of light. In solids, which are conductors, the valence electrons are
not bound to the parent atoms - they move freely in the crystal lattice, creating the
so-called electron gas. The free movement of electrons in metallic crystals results from
the potential energy distribution. As a result of the interaction of atoms (marked with
circles in Fig. 25.1 with a plus), the potential barriers separating adjacent atoms are
reduced to a value lower than the total energy of the electron and do not prevent the
electrons from moving (black ball with a minus).

Figure 25.1. Potential energy in the crystal

The atoms on the crystal surface (extreme left and right) have neighbors only on the
inside and therefore the potential energy in the vicinity of these atoms is di�erent than
in the back of the crystal. The potential energy at the surface is greater, so the surface
is a barrier to the electrons and they cannot leave the crystal. Graphically, it can be
said that the electrons are trapped in a potential "box" - they can move freely inside it,
but cannot pass through its walls.

It is possible for the electron to leave the metal (breaking the potential U0 barrier)
if it obtains additional energy of at least eU0. This energy is called the exit work.

The source of energy can be:

• increased temperature,
• then the phenomenon of thermo-emission occurs,
• strong electric �eld - �eld emission takes place,
• particle bombardment with su�ciently high kinetic energy and
• crystal lighting.

In the latter case, we are dealing with a photoelectric phenomenon. The ejection of
an electron from a metal by a photon occurs only when the energy of the photon hv is
equal to or greater than the work of the output W. The frequency corresponding to this
condition is the above-mentioned limiting frequency The energy transformation in the
photoelectric e�ect is described by the Einstein equation:

hν = W +
1

2
mv2, (25.1)
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where: h - Planck constant equal to 6.62 · 10−34 J·s, ν - frequency of the light wave, W
- output work, m - electron mass, v- its speed outside the metal. This equation should
be treated as an energy balance - the energy of the incident photon is converted into
the work of the output and the kinetic energy of the electron.

The photoelectric e�ect has found practical application in photocells. The construc-
tion of the photocell is shown in �g. 33.2. It consists of a glass bulb, the back wall of
which is covered inside with a metal layer with a low exit function. In the center of the
bulb is a wire loop that acts as the anode. Depending on the content, the photocell banks
can be vacuum or gas. In a vacuum photocell, the total current consists of electrons

Figure 25.2. Construction of the photocell; A
- anode, K - cathode

Figure 25.3. System for testing the character-
istics of the photocell; Z - light source, F -

�lter, G - galvanometer.

knocked out of the cathode and attracted to the anode. The amperage is relatively low.
Higher current intensity is obtained in gasi�ed photocells, �lled with a small amount

of noble gas, in which primary photoelectrons can ionize the gas atoms, thus increasing
the number of current carriers.

The electrons knocked out of the cathode of the vacuum photocell create an electron
cloud that repels the next electrons moving towards it. As the voltage at the anode in-
creases, the cloud is drawn more and more to the anode until each photoelectron reaches
the anode at a certain voltage. Despite the further increase in voltage, the intensity of
photocurrent does not increase further - the saturation state has been reached. To get
more photocurrent, you need to increase the illumination.

The photoelectric current �ows even when there is no voltage between the anode
and cathode. This is due to the kinetic energy possessed by the electrons when they
are knocked out of the metal. A complete loss of current can be caused by applying
a voltage of opposite polarity, i.e. a lower potential, to the anode. If the voltage is of
the appropriate value, called the inhibitory potential Vh, the electrons are completely
inhibited - their kinetic energy is used to perform work against the electric �eld:

1

2
mv2 = eVh. (25.2)
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Taking into account the above relationship, we can transform equation (25.1) into the
form

Vh =
h

e
ν − W

e
. (25.3)

It can be seen from the above that the voltage needed to inhibit photoelectrons is the
greater, the higher the frequency of the illuminating radiation.

Measurements and calculations

In this exercise, we perform two tasks:

• Determine the current-voltage characteristics of the photocell with the system shown
in �g. 25.3.

• We determine Planck's constant from the braking voltage measurements for lighting
of di�erent wavelengths.

The photocell is illuminated by the light of the Z �lament lamp which passes through
a suitable �lter F which transmits only light of a given wavelength. We have various
�lters at our disposal, so we can choose di�erent wavelengths. The regulated voltage is
supplied to the photocell from the DC power supply. The current is measured with a
microammeter or a G galvanometer. Instead of a galvanometer, you can use a suitable
resistor and a voltmeter connected in parallel to it, which measures the voltage caused
by the �ow of photocurrent. We calculate the value of photocurrent from Ohm's law.

In order to determine the braking voltage Vh, set a small positive voltage (at the
anode) and slowly reducing it, bring it to the zero value of photocurrent. This will
happen at some negative voltage, which is the brake voltage. Before starting these
measurements, carefully determine the meter zero de�ection by reading the current
indication with the meter input disconnected and shorted. We take the absolute value
of the braking voltage for the graph and for calculations.

Proceeding in this way, for di�erent wavelengths we obtain data for the plot Vh =
f(ν). From the Vh = f(ν) plot we can �nd the Planck constant h and the work of the
output W . The slope of the line, described by the equation (25.3), is h/e, and the point
of intersection with the ordinate axis is W/e. The same parameters of the line - let's
denote them areg and breg respectively - can be calculated by applying linear regression
to measurement points. From the comparison we get:

h

e
= areg, −W

e
= breg. (25.4)

After transforming the above equations, we get the �nal form of the expressions into
Planck's constant and the work of the output

h = arege, W = brege. (25.5)

Measurements:

1. The measuring system should be connected in accordance with the diagram attached
to the exercise (see diagram).
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Figure 25.4. Multimeter V562 for measurement U1.

Figure 25.5. Multimeter MT8045 for measurement U2 and calculate the photocurrent
Iphoto = U2/10MΩ.

2. Set the selected �lter. The table 5.2 lists the optical �lters with their central trans-
mittance wavelength (with an accuracy of 2 nm) for which the maximum light trans-
mittance of the �lters is observed.

3. For a selected �lter available on the workstation do the following: set U1 voltage
to 10 V and keep gradually lowering it while recording the U2 value until it reaches
zero;

4. Cut o� the light; set U1 = 0 and read U2 which is the U0;
5. Turn the light on again; set the negative voltage U1 such that the previously measured

U2 has the reference value U0; then the U1 is the stopping potential Vh;
6. Determine the stopping potential Vh for all the remaining �lters; do the standard

series of three measurements of Vh for each �lter.
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Table 5.2. The list of optical �lters with the wavelengths of their maximum transmittance
(with an accuracy of 2 nm)

No �lter: 1 2 3 4 5 6 7 8 9 10
Wavelenght (λ) [nm]: 400 425 436 500 550 575 600 625 650 675

Table 5.3. Accuracy of DC voltage measurement with the V562 meter - used for measure the
U1 voltage.

Range Resolution Precision

200 mV 0.1 mV ±(0.5% of reading + 0.1) mV
2 V 1 mV ±(0.5% of reading + 1.0) mV
20 V 10 mV ±(0.5% of reading + 10) mV
200 V 100 mV ±(0.5% of reading + 100) mV
2000 V 1000 mV ±(0.5% of reading + 1000) mV

Report:

1. Knowing values of U2 and R calculate the photocurrent If =
U2

R
and plot it as a

function: If = f(U1);

2. Knowing the wave lengths of the �lters � calculate the frequencies ν =
c

λ
;

3. Plot the stopping potential Vh as a function of frequency Vh = f(ν),
4. By using linear regression: determine the slope coe�cient areg and the point at which

the function crosses Y axis breg;
5. Calculate Planck's constant (h = arege) and work function (W = brege) and their

standard deviations;
6. Write down the �nal conclusions

Keywords:

• Photoelectric phenomenon: macroscopic description, photocurrent lag in relation to
illumination, photocurrent intensity and lighting, electron energy and lighting

• Microscopic description, Einstein equation, output work, cuto� frequency (wave-
length)

• Photocell, braking voltage, method of determining Planck's constant and output
operation

• Linear Regression
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26. Determination of ferromagnetic hysteresis loop by means of
a hallotron

Introduction

In �ve elements (Fe, Co, Ni, Gd and Dy) and in many compounds and alloys of
these and other elements, there is a special e�ect that allows to obtain a high degree of
magnetic order. In these metals and compounds, called ferromagnets, there is a special
form of interaction called the exchange interaction that couples the magnetic moments of
atoms together in a rigid-parallel fashion. This phenomenon occurs only below a certain
critical temperature, the so-called Curie temperature. Above the Curie temperature, the
exchange coupling disappears and the body becomes paramagnetic.

The presence of ferromagnetic material strongly in�uences the parameters of the
magnetic �eld. Consider a ring-shaped ferromagnet with a toroidal coil wound over it.
When a current of im �ows through the coil without a ferromagnetic core, a magnetic
�eld with an induction B0 is created inside it:

B0 = µ0nim. (26.1)

In the above formula, n denotes the number of turns per unit length of the toroid, µ0 -
magnetic permeability of the vacuum (µ0 = 4π · 10−7 H/m).

After entering the core toroid, the induction reaches B, which is many times greater
than B0. The reason for the increase in induction is the reordering of the elementary
atomic dipoles in the core and the creation of its own magnetic �eld that adds to the
external �eld. Therefore, the total induction can be expressed as:

B0 = B0 +BM , (26.2)

where By denotes the magnetic induction from the core. The B induction in the interior
of the ferromagnetic can also be expressed as follows:

B = µµ0nim, (26.3)

where µ is a dimensionless quantity called the magnetic permeability of the medium,
de�ning how many times B is greater than B0. The dependence of the B induction on
the magnetizing current is not linear, because in the case of µ ferromagnets it strongly
depends on the magnetic �eld strength H. The magnetic �eld is proportional to the
intensity of the magnetizing current:

H = nim. (26.4)

The aforementioned ordering of magnetic moments does not apply to the entire mate-
rial, but to certain areas called domains. Within the ferromagnetic domain, the magnetic
dipoles are parallel to each other, regardless of external conditions, while the ordering
directions in di�erent domains are di�erent. In the non-magnetized state, the menus
are positioned completely randomly (with the order inside the domains preserved), and
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Figure 26.1. Ferromagnetic hysteresis
loop; H - magnetic �eld strength, B -
magnetic induction in the material, BS , -
magnetic residue, HC - coercive �eld, N -

saturation

magnetization consists in the orientation of more and more domains towards the external
�eld.

For small and medium values of the magnetic �eld, the induction increases as a result
of changes in the size of the domains and their subsequent rotation - in equation (26.2),
the expression determining the increment of B is BM .

After reaching saturation (ordering all dipoles) in a strong �eld, the value of BM

becomes stable, while B0 continues to increase linearly.
The mechanism presented here describes the magnetization of a sample that was

completely demagnetized in its initial state. The graphic image of this process is the
so-called primary magnetization curve in the diagram B = f(H) (line 0 − N in Fig.
G.4).

After the maximum order is achieved, coupling forces also appear between the do-
mains, which keeps order even after subtracting the external �eld. The value of magneti-
zation at zero external �eld (but after previously achieved saturation) is called magnetic
residual or spontaneous magnetization.

In order to cancel this magnetization, we have to apply an outer �eld of the opposite
direction and with an appropriate value, called the coercive �eld. At this point, the
magnetization is zero. If the �eld continues to grow in the same direction, the domains
are inverted and the ordering process is repeated in the opposite direction.

Note that the induction B in the sample, as well as its magnetization, depend
not only on the value of the H magnetizing �eld, but also on the �history of the
sample�, i.e. on its current state. The full course of the dependence of induction on
the magnetic �eld strength is called hysteresis loop, its typical shape is shown in Fig. G.4.

Measurement

To measure the magnetic induction we use an iron ring in which a narrow slit is cut
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perpendicular to the induction line. The induction in the narrow slit di�ers little from
the value inside the ferromagnetic.

We measure induction in the gap with a hall e�ect sensor. The basis of the hall e�ect
is the Hall e�ect, consisting in the formation of the potential di�erence Vh between points
a and b (Fig. 26.2) of a thin semiconductor plate or conductor as a result of the magnetic
�eld acting on moving electric charges. The charges that make up the current z are in
a magnetic �eld perpendicular to the direction of the current. In such a situation, the
charges are in�uenced by the Lorentz force pushing them towards a− b, which causes a
potential di�erence between these points.

Figure 26.2. Hall e�ect sensor in a magnetic �eld
(above) and a Hall voltage measurement system

(next to it)

Figure 26.3. Hysteresis loop measurement system, H - hall e�ect sensor.

The potential di�erence Vh, also known as the Hall voltage, is proportional to the
current �owing through the hall e�ect as well as to the magnetic induction, and depends
on the type of material and the dimensions of the hall e�ect sensor.

VH = γiHB, (26.5)

The γ factor, called the sensitivity of the halothron, is determined by the individual
properties of the instrument. Once the sensitivity is known, the measurement of the
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magnetic induction is reduced to measuring the Hall voltage and the hall e�ect current
and using the equation (26.5). The ferromagnetic material, which is the subject of our
research, has the shape of a toroidal ring with a cut-out slot enabling the placement of
a halotron. A winding is wound on the ring through which a magnetizing current �ows.

The measuring system to determine the hysteresis loop is shown in �g. 26.3. It
consists of two parts. The �rst is the magnetizing winding power supply (to the right of
the ring), which includes a DC source, an ammeter, and a current direction switch. The
second part is the Hall voltage measurement circuit - it contains a hall e�ect sensor,
a hall sensor and a millivoltmeter. The same system in terms of which it shows its
functions more clearly is also shown in Fig. 26.2.

Measurements:

1. While changing the current im, record the corresponding Hall voltage Vh according
go the following procedure;

2. Increase the current gradually (step of 0.2 A) up to ∼3 A (not to exceed 3 A);
3. Decrease the current gradually to zero;
4. Switch the direction of current;
5. Repeat the measurements up to ∼3 A and down to zero again;
6. Switch the direction of current and �nish up the measurements reaching 3 A value

once again.

Report:

1. Determine the magnetic �eld H = n ∗ im (n = 6/cm or 600/m, i.e. number of coil
turns; im � magnetizing current) and the induction B knowing that Vh = γ · iH · B,
where
(γ = (140± 5) V/AT; iH = (10, 0± 0, 5) mA, Vh � measured Hall voltage);

2. Plot B = f(H);
3. Determine ∆B and ∆H; Calculate the errors by applying the method of logarithmic

or complete di�erential to equation (26.4) and to the transformed equation (26.5).
4. Mark error rectangles for several points on the plot.
5. Write down the �nal conclusions

Keywords:

• Ferromagnets, Curie temperature
• Magnetic induction in vacuum and in matter, magnetic permeability. Magnetic �eld
intensity, units of intensity

• Ferromagnetic domains, microscopic image of magnetization
• Hysteresis loop, spontaneous magnetization, coercive �eld
• Hall e�ect, Lorentz force, Hall voltage, Hall e�ect, induction measurement
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27. Calibration of the thermocouple

Introduction

The thermocouple consists of two di�erent conductors connected to each other as
shown in �g.27.1. If the points where the conductors connect have di�erent tempera-
tures, a potential di�erence is created between them, called the thermoelectric force.
Its value depends on the type of conductors that make up the thermocouple and on the
temperature di�erence and is expressed by the formula:

ε = α1(T − T0) + α2(T − T0)
2, (27.1)

where α1 and α2 are the thermoelectric coe�cients that characterize the materials used.
This e�ect is called the Seebeck e�ect.

The direct cause of the thermoelectric force is the di�erent value of contact voltages in
joints with di�erent temperatures. We will understand the existence of contact voltages
and their dependence on temperature by considering electron phenomena in metals.

Figure 27.1. Thermocouple

Figure 27.2 shows the occupied
electron levels in two di�erent conduc-
tors - A and B. Their Fermi levels EF

lie at di�erent distances from the vac-
uum level E0, so the work function
WA and WB are also di�erent. At
each temperature, there are a number
of electrons that have su�cient kinetic
energy to do the work of W exit, that
is, to go beyond metal surface. These
electrons create the so-called thermo-

couple current directed perpendicular to the metal surface. Density of the thermocou-
ple current is determined by the Richardson-Dushman law and for both conductors it
is respectively:

jA = AT 2e
WA
kT , (27.2)

jB = AT 2e
WB
kT . (27.3)

When both conductors are brought very close together, electrons leaving metal A
will go to metal B and vice versa. In the situation presented in Fig. 27.2, jA > jB due
to the values of the work functions (WA < WB). The advantage of the jA current leads
to an increase in the number of electrons in the B metal and to their shortage in the A
metal.

In this situation, the metals will be charged with opposite signs and a potential
di�erence will arise between them in such a direction that the further �ow of electrons
from A to B will be impeded and will eventually be balanced by the �ow from B to A.
In the equilibrium state, presented in Fig. 27.2b, the electrons �ux in both directions
are the same, which means that the power exponents in equations (27.3) and (27.3) are
equal, i.e.
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Figure 27.2. Energy bands of two separate conductors (a) and closely connected (b)

WA + eVk = WB. (27.4)

The above equation re�ects the fact that the electrons leaving the metal A must do, in
addition to the output work, work against the potential di�erence Vk. This di�erence
of potentials resulting from the contact of two conductors is called contact voltage. Its
value is determined only by the di�erence in the work function of both metals.

Vk =
WB −WA

e
, (27.5)

where e is the charge of the electron.
When both connectors of the circuit in Fig. 27.1 are at the same temperature, their

contact voltages compensate each other and the resultant voltage is zero. Similarly, in
any closed circuit composed of more than one conductor, the sum of the contact voltages
is equal to zero.

Contact voltage changes with temperature. This is due to the dependence of Fermi
energy on temperature. This relationship is described by the equation:

EF = EF0

[
1− π2

12

( kT

EF0

)2]
, (27.6)

where EF0 is the Fermi energy at 0 K.
When the temperature of a given contact changes, the changes in the Fermi energy

result in a di�erent value of the work function of both metals, which leads to a change
in contact voltage. Thus, only with a temperature di�erence of the joints in the circuit
will there be a resultant voltage called the thermoelectric force.

Thermoelectric force can also arise in a homogeneous conductor (without connec-
tors), when we create a temperature di�erence between its ends. This phenomenon is
known as the Thomson e�ect and is a simple consequence of the Fermi energy dependence
on temperature.

If we apply external voltage to a circuit containing connectors of di�erent conductors,
electric current will �ow. When a junction appears on the path of the current, where
the contact potential decreases in the direction of the current, heat is released at the
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junction, according to the Joule-Lenz law Q = iVkt. When the contact potential drops in
the opposite direction to the current, cooling of the junction occurs. We call the Peltier
e�ect the taking or the release of heat when electricity �ows through metal junctions.

Thermoelectric phenomena are now often used both for measuring temperature in
a very wide range and for detecting very little heating. Thermocouples, also known
as thermocouples or thermocouples, are used to measure a temperature that is not
too low. Measurement thermocouples consist of conductors with a known, previously
well-measured thermoelectric voltage. At the point of contact, the conductors, most
often in the form of wire, are welded or soldered. One of the contacts (�g. 27.3) is
inserted in a medium with a speci�c temperature of T0, e.g. in a mixture of ice and
water, and another in the place where the temperature of T is to be measured. The
voltage generated in the circuit is measured with a millivoltmeter. On the basis of the
measured voltage we determine the di�erence T −T0 and then the temperature T itself.

To measure the temperature from −200◦C to +350◦C we use copper-constantane
thermocouples, in the range of 0 ÷ 1000◦C iron-constantane, and to high temperature
measurement, prevailing in laboratory and industrial furnaces (up to 1700◦C are ther-
mocouples in which one wire is made of pure platinum, and the other is made of a 90%
platinum and 10% rhodium alloy.

In technical applications, a simpli�ed version of the thermocouple is used, presented
in Fig. 27.4. One connector is placed in the test center, and the voltage meter is
switched on in place of the other. The meter readings correspond to the temperature
di�erence between the medium and its surroundings. Compared to liquid thermometers,
thermocouples have the following advantages:

• have a very low heat capacity; they can be made of even the thinnest wires, making
them suitable for temperature measurements of micro-objects

• measurement sites may be located at large distances from the indicator;
• have a very large range of measured temperature from −250 to 2000◦C.

Thermocouple calibration

In order to �nd the thermoelectric voltages corresponding to the speci�ed temper-
ature di�erences T − T0 we use the system shown in Fig. 27.3 or its variants. One
connector is in a vessel containing a mixture of ice water (T0 = 0◦C), and the other
in an environment whose temperature can be regulated. It can be a vessel with water,
the temperature of which is changed with a heater, as well as a special electric heater
surrounding the thermocouple junction. In all cases, the temperature is measured with
a thermometer. Due to the inertia of the thermometer, the temperature rise cannot be
too fast. Adjustable temperature rise can be achieved by using an autotransformer or a
power supply that regulates the heater voltage. After each voltage change, wait for the
temperature reading to stabilize.

After �nding the thermoelectric voltages for di�erent temperature values, we plot
the graph. If it is a straight line, then α2 in equation (27.1) is zero and α1 is the slope
of the line.
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Figure 27.3. Thermocouple gauge system; A, B - various conduc-
tors.

Figure 27.4. Technical
thermocouple; A, B -

various conductors.

Measurements and Report:

1. Assemble the measuring system as shown in Fig. 27.3.
2. Find the zero reading by shorting the terminals of the millivoltmeter.
3. By gradually heating the thermocouple junction, measure the temperature approxi-

mately every 5◦C and the corresponding thermoelectric voltage.
4. Measure the thermoelectric voltage on each thermocouple (A to C) as a function of

temperature � according to the instructions given in class.
5. Make similar measurements while cooling down.
6. Plot the dependence of thermoelectric voltage on temperature (U = f(Temp.)) for

each thermocouple.
7. If the plot points are in a straight line, �nd the thermoelectric α1 using linear re-

gression. If the graph is clearly non-linear, determine the factor separately for the
beginning and end of the range. To do this, apply a linear regression twice to only
a few measuring points, respectively start and end.

8. Find the slope coe�cient errors.
9. Round o� the results and errors and make a �nal statement.
10. Write down the �nal conclusions

Keywords:

• thermocouples, Seebeck e�ect,
• Energy levels in metals, Fermi level, output work
• Thermoemission, Richardson-Dushman law
• Contact voltage, thermoelectric force
• Thomson phenomenon, Peltier phenomenon
• Construction of thermocouples, temperature measurement, advantages of thermo-
couples
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28. Measurement of the e/m ratio by means of deviations in the
magnetic �eld

Introduction

A force called the Lorentz force, determined by the formula, acts on an electrically
charged particle moving in an electric and magnetic �eld:

F⃗ = qE⃗ + q(v⃗ × B⃗), (28.1)

where: q - particle charge, v - its speed, E - electric �eld strength, B - magnetic
induction. In general, the action of both of these �elds leads to a change in the velocity
vector, in the electric �eld the direction of velocity may change, while in the magnetic
�eld the velocity value remains constant and the direction changes.

The study of the behavior of charged particles, such as electrons, positive ions, in
electric and magnetic �elds allows to determine the speci�c charge, i.e. the ratio q/m.

To determine the speci�c charge of the electron (e/m) we will use an oscilloscope
tube with a magnetic de�ection in the direction of Y . The structure of such a Lamp
is shown in Fig. 28.1. The electrons emitted from the heated cathode as a result of
the phenomenon of thermo-emission are then accelerated due to the di�erence of the
UA potentials between the cathode and the anode A. In order to focus the electron
beam, the anode is usually in the form of several cylinders with appropriate potentials.
Then the electrons pass between the CC plates, which are usually used for horizontal
de�ection, but will not be used in our exercise. A little further, the electrons enter the
area of the magnetic �eld directed horizontally, perpendicular to the direction of their
movement. According to the vector equation (28.1), the electrons are de�ected vertically
(Fig. 28.2). After exiting the magnetic �eld, they run in a straight line and eventually
hit the �uorescent screen, causing it to glow.

Figure 28.1. Construction of an oscilloscope tube, Z -
cathode incandescence (K), A - anodes, B - magnetic
�eld generating coils (one in front of and one behind
the tube), C - electrostatic de�ection plates , E - �uo-

rescent screen

Figure 28.2. In the magnetic �eld,
(the dotted area), the electron
moves along an arc with the radius

of curvature R

The magnetic �eld is created by the �ow of current through two coils placed opposite
each other outside the lamp. The magnetic induction B in the area between the coils
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has a direction parallel to the axis of the coils and its value B is proportional to the
current strength I:

B = cI. (28.2)

Let's �nd an expression that allows us to �nd the ratio e/m from the position of
the light spot on the screen. First note that the directions of electron velocity and
magnetic induction are perpendicular to each other and that in this case the value of
the de�ecting force in the de�ection in the magnetic �eld can be scalar expressed as
evB. This force causes the electron to move along the arc and the appearance of a force
of inertia (centrifugal) that opposes the contraction of the arc. Shortly after the electron
exits the magnetic �eld, both forces will balance and the electron will move around the
circle. The equation of both forces is expressed by the equation:

evB =
mv2

R
, (28.3)

where R is the radius of curvature of the track. The searched quantity e/m based on
the equation (28.3) can be represented as:

e

m
=

v

BR
, (28.4)

We can express the speed by the voltage UA, equating the kinetic energy to the work
done by the electric �eld on the path between the cathode and the anode:

mv2

2
= eUA. (28.5)

We insert the speed calculated from the above equation into equation (28.4), we square
both sides and we get:

e

m
=

2UA

B2R2
, (28.6)

There is only one amount left to eliminate - R. Taking into account that in the conditions
of the experiment y << l and d << R (Fig. 28.2), we can write:

α =
y

l
=

d

R
. (28.7)

The radius of curvature R can therefore be expressed as:

R =
ld

y
. (28.8)

where: l - the distance of the oscilloscope tube screen from the center of the coil, d -
diameter of the de�ecting coil, y - the deviation of the spot on the screen relative to the
position at B = 0.

After inserting formulas (28.2) and (28.8) into equation (28.6), we get the �nal
expression from which we can calculate the ratio e/m we are looking for based on
simple measurements:

e

m
= C

y2

I2
, (28.9)
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Figure 28.3. Power supply diagram of the de�ecting coil.

The constant C = 2UA/(c
2l2d2) includes only the quantities characterizing the appara-

tus.
Measurements:

1. Read the spot position at zero coil current (y0).
2. By changing the coil current approximately every 5 mA in the range from 20 mA to

110 mA read the position of the spot on the screen. Repeat the measurements for
the opposite direction of the current.

3. Note the accuracy of the spot position reading and the accuracy of the measurement
of the current �owing in the circuit.

Report:

1. Using the obtained data, determine the spot deviation in each measurement.
2. Determine the e/me ratio for each calculated spot deviation.

e

me

= C
y2

I2
, where C =

2UA

c2l2d2
= (7.7 ± 0.1) · 1011 A3skg−1m−2, I [mA] - current, y

[mm] - deviation of the spot on the screen relative to the position for B = 0, e =
1.602176634×10−19 C (exact) - charge of electron, me = 9.1093837015(28)×10−31 kg
- mass of electron, l - distance of the oscilloscope lamp screen from the center of the
coil, d - diameter of the de�ection coil, c - proportionality factor between magnetic
induction B and current I (B = cI).

3. Calculate the average value from the results obtained. Specify the accuracy of the
result.

4. Present the �nal results of the experiment (properly rounded).
5. Write down the �nal conclusions. Compare the result with literature data.

[9] CODATA 2018 (−e/me = −1.75882001076(53)× 1011 C kg−1)

Keywords:

• Electron charge and mass, charge in electric and magnetic �eld, Lorentz force,
• Oscilloscope lamp, charge speed obtained in electric �eld,
• Coil magnetic �eld, magnetic �eld path and force balance,
• Calculations e/m, quantities to be measured.

https://physics.nist.gov/cuu/Constants/index.html


6. Optics

29. Determination of the refractive index of apparent and real
thickness of the plates

Introduction

The light observed in everyday life sometimes passes through one or more mediums.
This causes the observer to get the impression that the light is coming out from a
di�erent point than it actually is. This phenomenon is called the image of the real
source or virtual source.

They look at the objects lying on the bottom of the vessel with water, it seems to
us that they are lying closer to the surface than in reality. On the contrary, a diver
looking up at, say, a hanging branch of a tree will think it is higher than it actually is.
In both cases there is an apparent change in distance resulting from the refraction of
light at the border of two mediums.

The physical basis of the method

An example of the phenomenon in which there is an apparent change in thickness,
as well as the principle of measuring this thickness is shown in Figure 29.1.

The rays re�ected from the lower surface (point C) refract when they reach the upper
surface. To understand this phenomenon, Snell's law should be used, which is as follows
at the interface of air-medium / two mediums of di�erent refrractive indexes:

sinα

sin β
=

n2

n1

, (29.1)

where α is the angle of incidence, β is refraction angle, n2 value of the refractive
index of the medium, and n1 the value of the air's refractive index (for vacuum n1 = 1,
for air n1 ≈ 1). After substitution n1 = 1 we get:

sinα

sin β
= n, (29.2)

where n is absolute refractive index of any medium.
In order to calculate the apparent thickness h, we assume that the incident rays

on the surface on the plate form a very small angle with the line perpendicular to the
surface at the point of incidence. When we look vertically down at the plate, we can
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Figure 29.1. Position of the microscope lens (focusing lens) relative to the plate to observe its
upper and lower surface.

assume that α and β are very small (α → 0 and β → 0 , so cosα ≈ 1 and cos β ≈ 1)
therefore:

tanα =
sinα

cosα
≈ sinα and tan β =

sin β

cos β
≈ sin β. (29.3)

From the �gure you can see that:

tanα =
AD

h
≈ sinα and tan β =

AD

d
≈ sin β. (29.4)

After substituting the above values in the equation 29.2, we obtain the relationship
between the apparent thickness h and the actual d:

n =
d

h
. (29.5)

The above relationship allows the calculation of the refractive index based on d and
h measurements.

Measurement Principle

The real thickness of the sample made of glass is measured with a micrometer screw,
and then the apparent thickness is measured with a microscope. The subject of the study
will be scratches on the upper and lower surfaces. First, we �nd a sharp image of the
upper scratch on the computer monitor screen, we read the position of the microscope
table on the micrometer (au). Then we look for a sharp image of the lower scratch
and read the position of the microscope table on the micrometer (al). The apparent
thickness of the tile can be determined from the formula:
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h = al − au. (29.6)

The microscope we use must be able to move the table or tube. Most microscopes
have scaled rotations of the precision tube knob. Using the �ne knob, we scale the
position from the top to the bottom of the crack, or vice versa, because the coarse feed
knob is not usually scaled. At the beginning, using the coarse feed, you should set the
visual acuity of the bottom scratch (it is recommended to set them on e.g. the bottom
surface of the tile, and then set the image on the bottom scratch). In this position, we
do not move the coarse knob anymore, and with the help of the precision knob we set
a clear image on the upper scratch. To calculate the tube travel, the number of full
revolutions should be taken into account, as well as the di�erences in the knob indication.

Measurements:

1. Turn on the computer and start the AMCAP program.
2. Turn on the microscope backlight.
3. Using a micrometer screw, measure the thickness d of the plate. Repeat the mea-

surement at least ten times. Note the measurement uncertainty (∆d).
4. Place the plate on the microscope table, so that the cross between the scratches on

the plate is just below the lens.
5. By changing the position of the table with a tile, �nd the position au, in which the

upper scratch is clearly visible, and then the position al, in which the lower scratch
is clearly visible.

6. Repeat the measurement ten times, each time "spoiling" the image and looking for
it again.

7. Note the measurement accuracy ∆au and ∆al.
8. Repeat the measurement for subsequent plates available on the test bench.

Report:

1. Determine the average values of actual (d) and apparent (h = al−au) thickness from
the obtained data. Then calculate the uncertainty of both thicknesses.

2. Determine the refractive index n =
d

h
and its uncertainty ∆n.

3. Present the �nal results of the experiment (properly rounded).
4. Write down the �nal conclusions

Keywords:

• Snell's law, refractive law, refractive index, light passage through a parallelepipedal
plate,

• course of rays from the upper and lower surfaces to the lens, observation of the plate
by a microscope, real and apparent thickness,

• expression of the refractive index by real and apparent thickness,
• method of measuring actual and apparent thickness
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30. Determination of focal length lenses from a lens pattern and
the Bessel method

Introduction

A lens is a transparent body limited by two spherical surfaces. The axis connecting
the centers of curvature of both surfaces is called the optical axis of the lens. The light
passing through the lens is refracted successively on both of its surfaces (in the drawings,
for convenience, a single refraction is usually marked on the so-called middle surface).
The ray passing through the optical center of the lens is not refracted regardless of the
angle of incidence on the lens - it undergoes only a slight parallel shift.

The beam of rays that runs parallel to the optical axis after passing through the lens
focuses on one point called the focal point (Fig. 30.1). The distance of the focus from
the center of the lens is called the focal length.

Figure 30.1. Focusing rays in the focus of a converging lens (left) and a di�using lens (right)

By choosing the right radius of curvature, you build focusing and di�using lenses.
The parallel beam incident on the scattering lens becomes a divergent beam after passing
through it. In this case, the focus is the point of intersection of the extensions of the
refracted rays.

The position of the focal point depends on the refractive index n of the lens material
with respect to the medium in which it is located, and on the radii of curvature of both
the bounding surfaces R1 and R2. The dependence of the focal length f on the above
parameters is given by the equation:

1

f
= (n− 1)

( 1

R1

− 1

R2

)
. (30.1)

The reciprocal of the focal length is called the focusing ability of the D lens:

D =
1

f
. (30.2)

The unit of the focusing power is the diopter of m−1.
The lenses have the ability to map points in that the rays coming from the point O,

called the object, are focused after passing through the lens at the point I, creating an
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image of the object. The position of the image depends on the position of the object
and the focal length of the lens - the so-called lenticular equation

1

o
+

1

i
=

1

f
, (30.3)

where o is the object distance from the lens, i - the image distance from the lens.
The equation 30.3 can be used when:

• rays extending from O create a small angle with the optical axis,
• the lens is thin, i.e. its thickness is small compared to the radii of curvature.

In relation to the distances o, and, R1, R2 and f , the following characters are valid:

• o is always positive,
• i, R and f are positive when it lies on the opposite side of the lens to the object,
• R and f are negative when on the same side of the lens as the object.

Figure 30.2. The image construction by the focusing lens (on left) and di�use lens (on right):
O - object, I - image, F - lens focus.

We can �nd the image in the lens using the geometric construction shown in Fig.
30.2. In the construction of the image, we use two characteristic rays:

• a ray parallel to the optical axis which, when refracted, passes through the focus,
• the ray passing through the optical center does not change direction.

The image is created at the point of intersection of these rays or their extensions.
Linear zoom is the ratio of the size of an image to the size of an object. It is also

equal to the ratio of the distances i and o

m = − i

o
. (30.4)

The "-" sign has been introduced so that the magni�cation is positive when the
image is straight and negative when it is inverted. An illustration of the equation (30.3)
is the graph in Fig. 30.3 showing the dependence of the distance of the image on the
distance of the object from the lens. The diagram shows hyperbolas, the individual



6. Optics 124

Figure 30.3. Lenticular equation plot; a -
focusing lens, real image inverted, b - fo-
cusing lens, simple imaginary image, c -
scattering lens, simple imaginary image

parts of which correspond to the situations marked in the �gure. From Figure 30.3, you
can easily �nd all the features of an image depending on the position of the object.

The focal length of a system consisting of two thin lenses f1 and f2, located at a
distance of d from each other, is given by the formula:

1

f
=

1

f1
+

1

f2
− d

f1f2
. (30.5)

Methods of �nding focal lengths

Based on the lens pattern

The distances o and i occurring in the formula (30.3) are easily measurable, so we
can use this formula to determine the focal length f . We place a glowing object, a lens
and a screen on the optical bench in such a way as to obtain a clear image of the object
on the screen. The screen and lens frame are placed on trolleys, which allows them to
slide along the bench. The wheelchair pointer moving relative to the scale on the bench
marks the exact position of the wheelchair or lens.

If the lens carriage does not have an indicator or the indicator is o�set from the
center of the lens, then:

• we read the position a1 of any edge of the trolley,
• then we rotate the cart or the lens frame by 180 ◦ and read the position a2 of the
same point of the cart as before,

• we calculate the real position of the lens a as the arithmetic mean of both positions.

Since the estimation of the sharpness of the image is associated with high uncertainty,
we repeat the position of the trolley several times, note the position of the indicator each
time, and then calculate the average value.
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Knowing the appropriate positions, we calculate the distance of the image and the
object from the lens, and then from equation (30.3) we �nd the focal length.

The described method cannot be applied directly to di�using lenses as they do not
give a real image. However, we can calculate the focal length of the system consisting
of the tested di�using lens and the converging lens. Given the focal length f and the
focal length fc of the converging lens, we �nd the focal length fd of the dispersing lens
from equation (30.5). When using this method, it should be remembered that the real
image will be obtained when the condition |fc| < |fd| is met, and that the focal length
of the di�using lens is negative.

The Bessel method

The distances of the image and the object appear symmetrically in equation (30.3)
- it means that after changing their values the equation still remains true. The physical
consequence of the symmetry of the lens equation is the possibility of obtaining a sharp
image with two positions of the lens relative to the object (Fig. 30.4).

Figure 30.4. Illustration of the Bessel method for determining the focal length of the lens

For a constant distance l of the object from the screen, the image is created at the
distance i and i′ = o from the lens. In one position the image is reduced in size and
in the other it is larger in relation to the object. Based on �g. 30.4 and the previous
paragraph, we can write a system of equations:

i+ o = l,

i− o = e.



6. Optics 126

We calculate o and i from them and then insert the obtained values into equation (30.3).
After simple transformations we get:

f =
l2 − e2

4l
. (30.6)

To determine the focal length of the lens or lens system from equation (30.6),
measure the object distance from the screen l and the distance e between the two lens
positions at which the image on the screen is in focus. When looking for the e distance,
we do not have to care about the exact position of the lens, because the di�erence in
positions of the lens is equal to the di�erence in positions of any indicator associated
with the lens holder. We make measurements for several screen positions.

Measurements:

1. Place the tested lenses in the holder.
2. Note the position of the luminous object on the scale attached to the optical bench

(xobj)
3. Set the screen on the optical bench. Note its position (xs).
4. Find the lens positions (two) so that the image on the screen is clear. Note them

(x1, x2).
5. Reposition the screen several times and �nd clear images of the item again.
6. Take measurements for each focusing lens and for lens systems (each scattering lens

with focusing lens). Note the distance between the lenses in the holder.

Report:

Determination of the focal length from the lens pattern

1. Determine the distance from each measurement:
the object from the lens (o = x1 − xobj or o = x2 − xobj)
and the image from the lens (i = xs − x1 or i = xs − x2).

2. Calculate, using the lens formula
1

o
+

1

i
=

1

f
, focal lengths f of lenses obtained from

individual measurements.
3. Calculate the average focal length for each lens favg. Determine it uncertainty

∆favg = 3 · σs · tn, where σs - standard deviation of average value, tn - the
Student-Fisher coe�cient.

4. Find focal dispersing lenses from equation
1

f
=

1

f1
+

1

f2
− d

f1f2
, where f - is focal of

lenses set, f1 - focal of focused lens, f2 - focal of dispersing lens, d - distance between
the lenses. Determine their uncertainty.

Determination of focal length by the Bessel method

1. Determine the distance from each measurement: the object from the screen and
between the two lens settings for a clear picture.

2. Calculate, using the Bessel formula (i + o = l and i − o = e or e = x2 − x1 then

f =
l2 − e2

4l
, focal lengths of lenses obtained from single measurements.
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3. Calculate the average focal length and its uncertainty for each lens.
4. Find focal dispersing lenses. Determine their uncertainty.

Additional

1. Present the �nal results of the experiment (properly rounded). Compare both meth-
ods.

2. Write down the �nal conclusions

Keywords:

• thick and thin lenses, optical axis, optical center of the lens, refraction of the lenses,
• focus, focal length, focusing ability, diopter,
• lens equation, conditions of using the lens equation, signs of the size occurring in the
lens equation,

• image construction, magni�cation,
• Bessel method

31. Determination of the di�raction grating constant

Introduction

Light is an electromagnetic wave, i.e. a wave consisting in the propagation of changes
in the intensity of the electric and magnetic �eld in space. The decisive role in optical
phenomena is played by the electric �eld intensity vector E⃗, also called the electric
vector. Therefore, to describe the light wave it is enough to de�ne this vector as a
function of time and spatial coordinates. The behavior of the electric vector of a wave
along the axis x is described by the wave function:

E = E0 sin

[
2π

(
t

T
− x

λ

)
+ φ

]
, (31.1)

where T and λ are period and wavelength respectively, φ0 is the initial phase.
All kinds of waves, including light waves, can di�ract and interfere. Huygens's

principle is the basis for explaining these phenomena: each point reached by a wave
becomes the source of a new spherical wave. Interference is the overlap of two or
more waves. At a certain point in space, the amplitude will be ampli�ed or weakened,
depending on the phase di�erence of the overlapping waves. If two waves extend from
points with the same initial phase, e.g. from di�erent slots of the di�raction grating,
there is a phase di�erence at the point of overlap due to the di�erence in traveled paths.
The interference conditions can be expressed both by the phase di�erence ∆φ and by
the path di�erence ∆S:

◦maximum : ∆φ = k · 2π, ∆S = kλ, k = 0, 1, 2, 3, ... (31.2)

◦minimum : ∆φ = (2k + 1) · π, ∆S = (k +
1

2
)λ, k = 0, 1, 2, 3, ... (31.3)
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Although the interference occurs for any waves, a time-constant interference pattern
can only be observed when coherent waves are superimposed, the phase di�erence of
which does not change with time.

Single slit

We observe the di�raction of light as it passes through a small hole in an opaque
obstruction. The essence of the di�raction phenomenon is shown in Fig. 31.1. Behind
the opening, which is often a narrow slit, the behavior of the wave depends on the size of
the opening in relation to the wavelength. When a >> λ , the width of the passing beam
is basically equal to the width of the opening - the illumination of the screen parallel to
the obstacle is the geometric image of the opening. In this situation, di�raction is not
visible.

Figure 31.1. The light passing through openings of di�erent sizes

This is not the case when a ≤ λ; then the wave behind the slit is clearly spherical
and illuminates the screen surface many times larger than the slit surface. It is a case
of wave di�raction (de�ection) on a single slit.

The di�raction image obtained on the screen is generally a system of wide fringes,
alternating light and dark; it is the result of superposition of elementary waves coming
from di�erent fragments of the slit. The central maximum occurs on the extension of the
direction of the incident waves, i.e. for the angle ϑ = 0 (see Fig. 31.2), while the location
of the successive di�raction minima (dark fringes) is determined by the relationship:

a sinϑ = mλ. (31.4)

Approximately halfway between adjacent minima there are the illumination maxima.
The width of the central maximum is determined by the location of the �rst

minimum (m = 1). Formula (31.4) shows that for wide slits a >> λ the �rst minimum
appears at a very small angle, which means that the central maximum is narrow and
re�ects the geometric shape of the slit. When the slit width is equal to the wavelength,
the �rst minimum occurs for the angle ϑ = 90◦, which means that the central maximum
�lls the entire space behind the slit. If the screen in this case is not too big, we can
assume that its illumination is homogeneous.
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Figure 31.2. Single-slit di�raction Figure 31.3. Di�raction on two slits

Two Slits

The image obtained on the screen when light passes through two slits (Fig. 31.3) is
the result of the simultaneous occurrence of two phenomena: di�raction of light on each
of the slits and interference of waves coming from adjacent slits.

Interference maxima occur at screen points for which the path di�erence ∆S is a
multiple of the wavelength. From Figure 31.3 it can be seen that ∆S = d sinϑ, so the
position of the interference maxima is determined by the relationship:

d sinϑ = mλ, m = 1, 2, 3, ... (31.5)

The angular distance of the interference fringes is determined by the ratio λ/d
where d is the distance between the centers of adjacent slits. The relative intensity of
these fringes is determined by the di�raction pattern of a single slit and thus depends
on the ratio λ/a, where a is the slit width. It can be said that the interference fringes
are intensity modulated by the di�ractive envelope. When the slots are very narrow,
the di�raction pattern is very wide - all the interference fringes have almost the same
intensity and only the interference image is visible on the screen.

The di�raction grating

Phenomena similar to those described above occur when the number of slots is
greater. Such a system of parallel slits, situated at equal distances, is called a di�raction
grating. Di�raction gratings are made by cutting grooves on the glass or on a metal
plate with a diamond blade. Glass meshes are called transmissive because we observe
the light after passing through the slots, while the metal meshes are called re�ective
ones, because the re�ected rays are interfered with. Having prepared such a model
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di�raction grating, further grids can be made. For this purpose, the standard mesh is
covered with a collodion solution, and then the hardened coating is removed and glued
to a glass plate or other pad. The less accurate meshes are made by the photographic
method.

In di�raction gratings, the width of the slits is on the order of the wavelength, so
the intensity of the interference fringes is almost constant.

Increasing the number of slots from two to N does not change the position of the
interference maxima, which are further described in equation (31.5), but causes some
changes in their shape. Namely, with an increase in the number of fractures, the maxima
become narrower. The angular width of the maximum is given by the formula:

∆ϑ0 =
λ

Nd cosϑm

, (31.6)

where ϑm, means the angle of occurrence of the maximum of the order m.
From equation (31.5) it can be seen that the position of the maximum changes with

the wavelength. This property allows the use of di�raction gratings for spatial separation
of the components of complex light, i.e. for spectral analysis. In order to be able to
distinguish between wavelengths with little di�erence, the principal maxima should be
as narrow as possible. We de�ne the resolving power of a di�raction grating as follows:

R =
λ

∆λ
, (31.7)

where λ is the average wavelength of the two spectral lines barely distinguishable and
∆λ is the wavelength di�erence between them.

According to the Rayleigh criterion, two maxima are at the limit of discrimination
when their angular distance is such that the maximum of one line falls on the minimum
of the other. If the angular distance is smaller, the two lines merge into one - they are
indistinguishable. If we apply this criterion, it turns out that the resolving power of
the di�raction grating is proportional to the total number of slits and the order of the
spectrum

R = Nm. (31.8)



6. Optics 131

Figure 31.4. Spectrometric table; D -
di�raction grating, K - collimator, L -
scope, S1, S2 - lenses, Z - light source, Sz

- slit

Principle of measurement

The constant of the di�raction grating d is the distance between the centers of
adjacent slits. In order to �nd this quantity, we will use the formula (31.5), which after
the transformation will take the form

d =
mλ

sinϑ
(31.9)

The investigation of the di�raction grating are done using light of a speci�c wave-
length, most often sodium light (λ = 589.6 nm). The value of ϑ angles for individual
rows is read using a spectrometer equipped with an exact angular scale. The ray traces
in the grating spectrometer are shown in Fig. 31.4. The divergent light from the Z lamp
enters the K collimator consisting of the aperture Sz and the lens S1. Since the slit is
at the focal point of the lens, it is parallel from the collimator. After passing through
the D di�raction grating, the beam is focused by the S2 lens of the L scope, thanks to
which we observe a sharp image of the slit. The scope is equipped with a cross made of
spider threads, which allows for precise setting of the slit image in the �eld of view.

The collimator is �rmly attached to the spectrometer base, while the telescope
is attached to the protractor and can be rotated about the spectrometer axis. The
angular position of the telescope can be read with high accuracy using the angular
scale provided with a vernier.

Measurements:

1. Using the telescope, look for the image of the gap without a di�raction grating. In
the absence of an image, adjust the gap width, position and focus of the telescope.

2. After setting the gap image at the intersection of spider threads, write down the
position of the telescope. It is equal to the position of the zero band ϑ0.

3. Place the di�raction grating of interest one after the other on the spectrometer table.
4. List the positions of the higher order fringes located on the left (ϑl) and right (ϑr)

of the zero line.

Report:

1. Determine de�ection angles for each order for the tested grating.
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2. Determine the di�raction grating constant for each measurement d =
mλ

sinϑ
, where

m - is the fringe order, ϑ = |ϑ0 − ϑl| = |ϑr − ϑ0| - the angle of light de�ection.
3. Determine the constant of each di�raction grating as the average value. Determine

their uncertainty (σs - the standard deviation of the arithmetic mean).
4. Present the �nal results of the experiment (properly rounded).
5. Write down the �nal conclusions

Keywords:

• wave nature of light, Huyghens principle,
• interference, ampli�cation and weakening conditions expressed by phase and by way,
• coherence, di�raction on a single aperture: image dependence on the aperture width,
location of minima, maximum width,

• two apertures: maximum condition, from which the distance between the fringes
depends, and what is the relative intensity?

• Di�raction grating: construction, width of main maxims, resolution,
• spectrometer structure, vernier

32. Optical emission spectra study

Exercise goals:

• Identifying elements based on their spectrum
• Examining spectra of selected sources of white light

Introduction

Spectrum is a very broad term in science and technology. In broad meaning
it's a dependence of signal intensity from its frequency. Spectrum may concern
electromagnetic waves (microwaves, light, x-rays), acoustic waves (infrasound, sound,
ultrasound) and other signals. Branch of science concerned with examining spectra is
spectroscopy. Spectroscopy gives us a lot of information about di�erent phenomena and
properties of matter. Because spectroscopy is a very broad branch of science in this
exercise we will focus on small segment of examining optic spectra. Optic spectrum is
a dependence of luminescence from frequency or wavelength.

Methods of obtaining optic spectra

Light commonly describes electromagnetic waves visible to human eye (wavelengths
between 380 and 780 nm). In engineering light is a broader term: it describes elec-
tromagnetic waves which behave according to laws of optical geometry. Besides visible
light it also applies to close infrared and close ultraviolet.

To observe and register spectra in visible range we use spectrometers equipped with
elements that splits light (prisms or di�raction gratings). In modern spectrometers split
light falls on light sensitive charge-coupled device, and then is registered on a computer.
Figure 32.1 shows schematic spectrometers equipped with prism and re�ective di�raction
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grating. In reality spectrometers are more complicated, and more advanced devices are
equipped with several elements that split light.

Figure 32.1. Schematic model of optical spectrometer a) equipped with prism b) equipped
with re�ective di�raction grating. Markings: LS - light source, S - slit, P - prism, CCD -

charge-coupled, DG - re�ective di�raction grating.

Types of optic spectra

There are a lot of methods of classifying spectra. Two basic ones are shown here.

1. Based on mechanism of generation spectra can be divided to:
a) emission spectra � received as a result of medium radiating light (Figure 32.2a)
b) absorption spectra � received after white light travels through examined medium

(Figure 32.2b)
2. Based on character (representation) of spectrum (Figure 32.3)

a) linear � consisting of series of thin lines corresponding to speci�c wavelengths;
monoatomic gases and metal vapours are sources of this spectra

b) band � consists of large number of lines close to each other, creating quite wide
bands as a result: diatomic gases or particles are sources

c) continuous � consists of waves of all lengths: solids and liquids are sources.

Figure 32.2. Methods of generating a a) emission, b) absorption spectra. Markings: LS - light
source, WLS - white light source, EM - examined medium.

Why does matter shine?

To answer this question we must examine structure of atom. Atom consists of
small, heavy, positively charged nucleus and orbiting around it negatively charged, small
electrons. Movement of those electrons takes place on so called stationary orbits, and
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Figure 32.3. Examples of emission spectra: linear, band, continuous. Top images shows sepa-
rated rays of light, bottom registered spectra

the energy of electron on each orbital is speci�ed. In other words: energy of electron
in atom is quanti�ed. When electron moves from higher energy orbital (orbital further
from nucleus) to lower energy orbital electron emits quantum of energy equals to:

E = hν = En − Em, (32.1)

where h - Planck constant, ν � frequency of emitted electromagnetic wave, En and
Em � energies of electron on nth and mth orbital. Using dependence between frequency
and wavelength ν = c/λ we can transform formula (32.1) to:

λ =
hc

En − Em

, (32.2)

where λ � length of emitted electromagnetic wave, c � speed of light in vacuum.
This formula shows that if energies of electrons in atom can have only certain values,

it can only emit waves of certain wavelengths. Based on analysis of spectrum we can
learn a lot about structure of an atom, or on the other hand identify type of element
that emits waves. Waves emitted by atom in a way described above fall in range of
infrared, visible, ultraviolet of X-rays. If waves are in range of visible light we say that
object shines.

So far we talked about generating linear spectra. Why are spectra of complex
gases, liquids and solids di�erent from spectra of singular atoms shining? It's because
system consisting of multiple atoms increases the number of possible energy levels.
For example: hydrogen molecule H2 consists of two electrons and two protons, but it's
spectrum is much more complex than spectrum of singular hydrogen atom. Internal
energy of molecule additionally consists of energy of molecular vibrations and rotations.
As a result H2 molecule has numerous spectral lines compared to only four in visible
range for singular atom H. The more complex molecule and atoms building it are, the
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more complex its spectrum is. For liquids and solids number of lines is so large that we
observe continuous spectrum.

Examples of applying optical spectroscopy:

1) To control the quality of plates in rolling mill, electric arc is crated, which makes shining

atoms to evaporate from material. by examining linear spectrum of this vapour, we can

determine composition of material (using characteristic lengths of lines) and proportions of

atoms (based on ratio of intensity of lines of speci�c elements)

2) Based on spectrum emitted by a star astronomers can determine its composition and velocity

at which it's moving relative to Earth. Using subtle changes in star spectra it was concluded

that the universe is expanding.

What is a white light?

White light is commonly de�ned as combination of all colours (all waves in visible
range). If we observe white sunlight spliting in raindrops we see multicolour rainbow.
However for human eye we can create impression of white light in multiple ways. It's
a result of the fact that photoreceptor cells (cones) in human eye are sensitive to three
basic colours: red, green and blue. Mixing them in di�erent proportions we can create
impression of white light or create new colours. Sometime white light from di�erent
sources falling on white piece of paper looks almost identical, but have signi�cantly
di�erent spectra. Also colourful painting will look di�erent when it's lit by, for example,
light bulb, compact �uorescent bulb, or LED lamp, despite the fact that theoretically
all of the emit white light. It's caused by di�erent methods of creating light in those
sources and therefore di�erent spectra.

Let's examine ways in which we can create white light. As it was mentioned in order
to make an atom shine its electron must obtain energy necessary to �jump� to higher
orbital to later lose this energy by emitting electromagnetic wave. This energy can be
delivered in di�erent ways. Easiest way is heating up to high temperatures. For example
surface of the Sun, heated to 5800 K emits intense white-blue light. Phenomena of light
being created as a result of high temperatures is used in classic light bulbs. Its tungsten
�lament is heated to 2700 K and shines white-yellow light. However this method is
ine�cient. Only about 3-5% of light is in visible range, rest is invisible to human eye
infrared radiation. Compact �uorescent bulb is a more e�cient source of white light.
In this bulb vapours of mercury are stimulated to shine by electric discharges. Light
emitted by mercury falls on phosphor which shines thanks to �uorescence. Spectrum
of this lamp is considerably di�erent than sunlight and because of that colours of for
example a painting looks di�erent than in sunlight. Other source of white light is LED
lamp. Usually it's a collection of light emitting diodes covered in phosphor and placed
in a casing intended for light bulbs. Diodes, thanks to e�ect of electroluminescence emit
blue light which causes phosphor to shine. Yellow-green-red light emitted by phosphor
is mixed with blue light of diode which gives white light. If spectrum of white light
contains a lot of blue light it's called cool white light, if there isn't much blue light we
call it warm white light.
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Measuring system

Measuring system (Figure 32.4) consists of spectrometer (range between 300 � 1000
nm) connected to computer. Using optic �bre spectrometer can receive light from seven
di�erent sources marked A, B, C and 1, 2, 3, 4. Spectrometer is operated using Overture
program, which should be launched after turning the computer on. Symbols of selected
functions are on station.

Exercise consists of two stages. First stage is identifying elements in spectral tubes.
Lamps on station contain: A � mixture of monoatomic gas and metal vapour; B �
monoatomic gas; C - simple diatomic gas. During identi�cation small resolution of
spectrometer has to be taken into account. Because of that if distance between lines
is smaller than 3 nm, they can blend together. Second stage is observing white light
coming from di�erent sources: 1 - compact �uorescent bulb, 2 - LED lamp, 3 - LED
RGB lamp, 4 - light bulb.

Figure 32.4. Experimental system used to examine optic emission spectra

Course of exercise

A. Identifying gases in spectral tubes

1. Turn on lamp A and move the end of optic �bre in front of it. Regulate position of
�bre and �measurement integration time� so spectrum �ts on the screen. Click the
�colour� icon to show real colours of spectrum.

2. Using computer mouse move the cursor to the maximum of each line. Write down
its wavelength and intensity. If a line is wider note that it can be multiple spectral
lines close together.

3. Repeat measurements for lamps B and C.
4. Compare obtained spectral lines to spectra in �Spectral tables� added to this exercise

(see table C.10) or to spectra in Spektru± program.

https://phys.put.poznan.pl/przydatne-programy
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5. Specify elements in lamps A, B and C and note down �ndings

B. Observing spectra of selected light sources of white light

1. Turn on lamp 1 (compact �uorescent bulb) and register spectrum.
2. Write down positions of bands and their intensity and compare them to lines emitted

by mercury. Write down the conclusions.
3. Turn on lamp 2 (LED lamp) Write down maximums of spectrum. Write down the

conclusions.
4. Turn on lamp 3 (LED RGB lamp) and using pilot set white light (point the pilot

to the hole in the back of the cover). Note down wavelengths for which you observe
maximum values of spectral bands.

5. Using pilot change colour to for example yellow, purple, orange. Analyze spectra
and write down �ndings.

6. Turn on lamp 4 (light bulb). Using potentiometer set maximum voltage on bulb, cor-
responding to maximum temperature of �lament. Register spectrum using �shutter'
icon.

7. In the same way register 3-4 more spectra while lowering voltage.
8. Compare obtained spectra for di�erent temperatures of �lament. Notice minimal

values of wavelengths emitted by bulb for di�erent temperatures of �lament.
9. Write down the �nal conclusions

Keywords:

• linear, band and continuous spectra
• element identi�cation based on spectra
• spectrometer construction
• absorption spectra, photoluminescence, Stokes rule

33. Determination of the refractive index of a liquid using an
Abbe refractometer

Introduction

When a light ray runs from an optically thinner to optically denser medium, e.g.
from air to glass, it is refracted at the interface of the media, creating a smaller angle
with the normal to the surface (refraction angle) in a denser medium than in a thinner
medium (the corresponding angle is called the angle rainfall). In the case of the reverse
rays of the rays, the angle of incidence is smaller than the refractive angle. Each angle
of incidence α corresponds to a di�erent angle of refraction β, but the ratio of the sines
of both angles has a constant value for a given pair of media and for a given wavelength
of light. It is quanti�ed by the following equation:

sinα

sin β
=

n2

n1

. (33.1)
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Figure 33.1. Illustration of complete
internal re�ection

The above formula expresses the law of refraction (Snell's law), and the values n1 and
n2 are called the absolute refractive indices of medium 1 and medium 2. The absolute
refractive index is also determined by the ratio of the speed of light in a vacuum c to
the speed of light in a given medium v:

n =
c

v
. (33.2)

Since the speed of light is greatest in a vacuum, the absolute refractive index is greater
than one for material media.

The refraction of light at the border of two material media is determined by their
relative refractive index:

n21 =
n2

n1

. (33.3)

In real conditions, light refraction often occurs at the interface between air and a liquid
or a solid. In this situation it can be assumed that air has a refractive index very close
to the value for vacuum (n = 1) and that equation (33.1) determines the absolute
refractive index of the liquid or gas.

Total internal re�ection

Snell's formula takes a particularly convenient form for this internal re�ection oc-
curring at a limit angle or greater. The essence of the phenomenon of total internal
re�ection is shown in Fig. 33.1.

The rays from the optically denser medium II to the thinner one deviate from the
perpendicular the more the greater the angle of incidence α. The refraction angle reaches
the value of 90 ° at a certain angle αg, called the limit angle - the ray does not go to the
medium I. So we can see that at the limit angle and higher incidence angles the rays
cannot pass to the rarer medium - they are completely re�ected.

For the angle of incidence equal to the limit angle, the refraction law takes the form:

n1

n2

=
sinαg

sin 90◦
. (33.4)
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If we know the refractive index of the denser medium and measure the limit angle αg,
we can determine the refractive index n1 of the rarer medium. We measure the limit
angle with a refractometer.

For rays going from a thinner to a denser medium, complete re�ection does not occur.

Construction of an Abbe refractometer

The main part of the Abbe refractometer are two rectangular prisms - P1 i P2 (Fig.
33.1) made of �int glass with a high refractive index. The prism P1 can be de�ected by
rotating it around axis O. After pivoting, a few drops of the tested liquid are placed on
the hypotenuse surface of the prism P2, which after pressing the prisms forms a thin,
plane-parallel layer.

A divergent beam of light from any source falls on the P1 prism, and then it walks at
di�erent angles of incidence to the hypotenuse, encountering the medium with a lower
refractive index, which is the tested liquid between the prisms. The boundary between
the P1 prism and the liquid is the surface on which total internal re�ection can occur -
for some angles of incidence, it will not.

Suppose that a ray of light 2 in Fig. 33.2 falls at an angle slightly smaller than the
limiting angle; then rays above ray 2 will be completely internally re�ected, while rays
between 2 and 3 will pass to the second prism P2 and then to the �nder L1. The rays
that fall on the prism P1, in other places, create a beam coming out with P2 contained
entirely between the marked rays 2 and 3.

Figure 33.2. Measurement principle with an Abbe refractometer; L - scope, O - axis of rotation
of the moving prism P1, P2 - stationary prism

With the described beam path, in the �eld of view of the telescope we can see a
bright area (from beam 2 downwards) and a dark area (above beam 2). The position
of the border between light and dark areas depends on the value of the refractive index
of the liquid. This border is guided to the center of the �eld of view of the stationary
telescope by the rotation of the P1 P2 prisms.

The universal Abbe refractometer, which we use in the exercise, is a more developed
structure (see �g. 33.3), thanks to which it allows the use of white light and direct
reading of the refractive index value.
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The rotation of the P1 and P2 prisms is coupled to the movement of the K scale
prepared on the basis of equation (33.4) in such a way that the refractive index is
directly read from it. We make the reading with the L2 scope, through which we can
see two divisions: one showing the value of the refractive index and the other giving the
percentage of sugar in the aqueous solution. The latter is only used to determine the
sugar content. In some constructions, the refractometer has only one telescope - we can
see both the image and the scale through it.

Figure 33.3. Construction of an Abbe refractometer

In the prisms of the refractometer, as well as in the tested liquid, the phenomenon of
dispersion occurs, as a result of which white light is split. As a result, the line between
the �eld of view is not sharp, but rather colored and blurred.

In an Abbe refractometer, the �ssion is compensated by a system of two prisms P3

and P4. Each of them consists of several, usually three, single prisms made of di�erent
types of glass, with di�erent refractive indexes. The breaking angles of these prisms
are selected so that the light of the yellow sodium line is not subject to any deviation.
Red and purple rays are de�ected in opposite directions. The prism gives the spectrum
as seen straight ahead and is therefore called em á vision direct. The light di�usion
caused by two identical prisms depends on their mutual orientation. When they are
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arranged in parallel, the refractions caused by each of them add up, while when one of
them is rotated 180◦ around the optical axis, the �ssion is canceled - the light behind
the other prism is white. For the other P3 and P4 prism settings we have intermediate
cases. In the refractometer, this system is used to compensate for the dispersion caused
by the tested liquid.

Measurements:

1. Turn on the table lamp and use the mirrors to illuminate the �eld of view of both
spotting scopes.

2. Set the sharpness of the spider's threads and the scale in the telescopes.
3. Fold back the prism P1, check that its surface is dry and clean, then apply a few

drops of the test solution to it with a pipette and press the prism.
4. Use the P1, P2 prism dial to align the border to the center of sight of the telescope

light and dark �eld. Compensate for color split.
5. Read the value of the refractive index of the liquid in the L1 scope.
6. Repeat the measurements for solutions with subsequent concentrations (also for the

concentration designated �X�). Remember to clean and dry the prism surfaces before
using the new solution.

7. For pure glycerin (100% concentration) measure the refractive index as a function of
temperature (T ). An ultrathermostat (see 7) combined with a refractometer is used
to regulate the temperature.

Report:

1. Plot the dependence of the refractive index on the concentration of the solution
n = f(C).

2. Plot the relationship n = f(T ) the refractive index on the temperature for 100%
glycerin.

3. Draw the appropriate error rectangles on both graphs.
4. Using the experimentally obtained dependence of the refractive index of the solution

on the concentration of glycerin and the determined refractive index of the unknown
solution "X" determine its concentration.

5. Determine the accuracy of the concentration determined.
6. Write down the �nal conclusions

Keywords:

• angle of incidence, refraction and re�ection, refractive law, absolute and relative
fracture rates

• internal re�ection
• construction of an Abbe refractometer, rays running through the system
• dispersion, dispersion compensation
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34. Investigation of the polarization plane torsion caused by
solutions using a polarimeter

Introduction

The light from natural sources is non-polarized, i.e. the vibrations of the light vector
take place perpendicular to the direction of the rays, but in all possible planes on which
this direction lies (Fig. 34.1 - in front of the polarizer). When we place a polarizer in
the path of a beam of non-polarized light, it will only pass through those rays in which
the vibrations take place in one plane. After passing through the polarizer, the light is
linearly polarized - the ends of the light vectors lie on a straight line. Parallel lines on
the polarizer, which are not actually visible, show the characteristic directions of the
plate's polarization.

Figure 34.1. Production of linearly polar-
ized light; P - polarizer

Figure 34.2. Polarization on re�ection; φp

- Brewster angle

Polarization by re�ection

As a result of light re�ection from the boundary of two media (Fig. 34.2), both
the re�ected and refracted rays become partially polarized. The degree of polarization
depends on the angle of incidence - if we choose it so that the angle between the
re�ected and refracted rays is straight (Fig. 34.2), the re�ected ray is completely
polarized in the plane perpendicular to the plane of incidence, while the refracted ray is
partially polarized, with the predominance of vibrations in a plane parallel to the plane
of incidence. The φp angle is called the angle of complete polarization or the Brewster
angle. The degree of polarization of the refracted beam can be increased by passing it
through a set of parallel plates.

Polarization in anisotropic crystals

If the crystal properties depend on the direction, the crystal is anisotropic, otherwise
it is isotropic. In the phenomenon of double refraction by anisotropic crystals, the
incident beam is split into two: ordinary (o) and extraordinary (e), with perpendicular
vibration planes. The extraordinary beam does not obey the law of refraction (Snell's
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law). The direct cause of the di�erent behavior of o and e rays is their generally
di�erent speed. The speed of the ordinary ray v0 is constant in all directions of the
crystal, while the speed of the extraordinary ray varies, depending on the direction,
from the value of v0 to the value of ve, where ve for some crystals is less than v0 for
others - greater. The direction in an anisotropic crystal for which ve = v0, is called
the optical axis of the crystal. The ray that runs in the crystal parallel to the optical
axis is not refracted twice. If we remove one of the beams, we get linearly polarized
light at the output of the anisotropic crystal. A common device that uses the described
phenomenon is the Nicola prism.

Polarization and dichroism

Some double refractive crystals have a property called dichroism in which one of the
polarization components is absorbed in the crystal much more strongly than the other,
which passes with a slight attenuation. This property is the foundation upon which the
widely used polaroids function is based. Instead of homogeneous crystals, it is possible
to use a large number of small crystals arranged in a plastic plate so that their optical
axes are parallel.

When we place two polarizing plates on the axis of the running light beam, one
of them will function as a polarizer, and the other - as an analyzer. By turning the
analyzer, we �nd that in some positions the system almost does not pass any light,
and in positions that di�er from those by 90◦ the light intensity is maximum. This is
of course related to the angle that the polarization directions form with each other in
both polaroids. The intensity of the light coming from the analyzer as a function of the
mentioned angle is described by the Malus law:

I = Im cos2 φ, (34.1)

where Im corresponds to the angle φ = 0.
Reducing light vibrations to one plane, i.e. linear polarization, is not the only way

to arrange light vibrations. There may also be a light where the end of the light vector
traces a helical line around the propagation direction. We are talking then about circular
or elliptical polarization.

Circularly polarized light is created as a result of the superimposition of two coherent
linearly polarized waves in mutually perpendicular directions (they can be ordinary and
extraordinary rays) with a phase di�erence of 90◦ and equal amplitudes. The resulting
vibration will be circular according to the principle of adding perpendicular vibrations
(see Lissajous �gures). When the amplitudes of the component vibrations are di�erent,
the polarization is elliptical.

If linearly polarized light passes through some substances, called optically active
substances, the plane of polarization is twisted. Optically active substances exist in
two forms, which exhibit the same torsion capacity, but in opposite directions. Hence,
optically active substances are divided into right- and left-handed. The particles of
right- and left-handed substances di�er in structure, as well as the image and the object
in a plane mirror, they are the so-called enantiomorphs. In optically active substances
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there is the so-called an asymmetric carbon in which each of the valences is saturated
with a di�erent atom or group of atoms.

An example of such a substance can be tartaric acid, the two enantiomorphic
forms of which are presented in Fig. 34.3. Strong left twisted (left) and right twisted
properties Polarization planes also show torsional (right) sugar solutions.

Figure 34.3. Structure of a molecule of
left-handed tartaric acid (left) and right-handed

(right)

Measurements and calculations

The twist angle of the plane of po-
larization through the solution with
concentration c is determined by the
Biot formula:

α = [α] · l · c, (34.2)

where: [α] - speci�c torsional ability, l
- light path length in the solution.

To measure the twist angle, �rst
place a clean solvent in the path of
the light beam and read the position
of the analyzer αo and then replace the
solvent with the test solution and read
the position of the analyzer again - αc.
The angle of twist I am looking for
is αc − α0. Devices that are used to
study the rotation of the plane of po-
larization are polarimeters. Polarime-
ters for measuring sugar concentration
are called saccharimeters. The main
elements of the polarimeter (Fig. 34.4) are: the P polarizer and A analyzer (Nicol's
prisms) and the R tube between them containing the optically active substance solution.

Figure 34.4. Construction of a Laurent polarimeter; F - light �lter, P - polarizer, L - instrument
halftone, R - tested liquid in the tube, A - analyzer, K - protractor, G - scope

The light enters the instrument through a �lter, giving o� a narrow wavelength
range. The analyzer is connected to a protractor. The scope is used to observe the light
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passing through the system, and the magni�er is used to accurately read the angles of
rotation of the analyzer.

The essence of the measurement comes down to the most accurate determination of
the position of the analyzer at which the illumination of the �eld of view is constant.
When observing with the naked eye, we set the analyzer to the maximum extinction
of the light - in these conditions the eye is most sensitive to changes in brightness. In
factory polarimeters, the semi-shade device helps to precisely position the analyzer. It
is a plate that slightly twists the plane of polarization, but only for part of the beam.
This is the reason why the �eld of view of the telescope is divided into �elds, usually
di�erently illuminated. Depending on the design, the �elds may have the shape of two
semicircles or a wide central strip and two side �elds. By turning the analyzer, we can
bring the illumination of the entire �eld to a small but even position. Minimal analyzer
rotation causes lightening of one of the �elds. In this situation, the human eye can
distinguish with high accuracy (about 0.1◦) whether the �elds are illuminated in the
same way or whether their illumination di�ers. This is the most sensitive position of
the analyzer. In other positions, we can obtain high contrast �elds or the entire bright
�eld.

In order to �nd the correct torsional capacity, we measure the torsional angles for
di�erent bracings and use the fact that the relationship between these values, given by
equation (34.2), is linear. The slope areg is computed by linear regression. The same
coe�cient appears for c in the mentioned equation as ([α]·l). By comparing both values,
we obtain the desired value of the proper torsional ability

[α] =
areg
l

. (34.3)

Measurements:

The measurement uses sugar-in-water solutions placed in tubes with a length of
l = (0.185± 0.005) m.

1. Adjust the telescope in such a way as to obtain the visual acuity of the dividing
line observed in the polarimeter of a �eld with di�erent shading. Set the reading
magni�er to the scale view sharpness.

2. Insert a tube of clean water into the inside of the polarimeter. Turn the analyzer
to get an even (dark) �eld of view. Record the value indicated by the protractor.
Repeat the measurement at least six times.

3. After removing the tube with clean water, repeat the measurements for the next
tubes containing solutions of di�erent concentrations c. Note the analyzer angle
(αA) and solution concentration (c).

4. Note also the angle observed for the sugar solution of unknown concentration in the
tube marked 'X'.

5. Note the accuracy of the measuring device

Report:

1. Calculate the angles (α) of the torsion of the polarization plane by each of the
solutions
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2. Make a plot of α = f(c).
3. Using the linear regression method, determine the slope coe�cient areg and its un-

certainty ∆areg.
4. Determine the proper torsional ability [α] for the aqueous sugar solution using equa-

tion [α] =
areg
l
, where l - is length of the light path in solution. Calculate [α]

uncertainty using the total or logarithmic di�erential method.
5. Find the sugar concentration in tube "X". Specify the measuring accuracy of this

concentration.
6. Present the �nal results of the experiment (properly rounded).
7. Write down the �nal conclusions

Keywords:

• linear polarization, polarization by re�ection and refraction, double refraction
• anisotropic and isotropic crystals, optical axis
• Nicola's prism, dichronism
• polarizer and analyzer, Malus law
• circle and elliptical polarization
• polarization plane torsion, asymmetric carbon
• polarimeter, half-shade device
• Biot's formula, vernier

35. Determination of the light e�ciency of selected light sources

Exercise goals:

• determining illuminance as a function of distance from a source of light
• determining luminous e�ciency of examined light sources (LED lamp, halogen bulb
and traditional bulb)

• determining dependence of luminous e�ciency from power consumption

Introduction

Patented by Thomas Edison in 1879 bulb is still very popular in home lighting. It's
caused by low production cost, lack of stroboscope e�ect and electromagnetic spectrum
similar to sunlight spectrum. Big disadvantage of light bulb is low luminous e�ciency,
only 2 � 4 % of energy consumed is converted to light. Because of that people were
working on �nding more economic substitutes for years. Currently a lot of di�erent
electrical light sources are available but their relatively higher luminous e�ciency comes
witch disadvantages. For over a decade �uorescent lamps can be found in our homes
and e�cient LED lamps in last few years. Big advantage of latter is long lifetime and
high luminous e�ciency (often more than ten times e�ciency of traditional bulb). In
this exercise we will focus on measuring latter parameter.
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Determining the luminous e�ciency of light source

The luminous e�ciency η is de�ned as ratio of total luminous �ux ΦC emitted by a
source to power consumed by source P

η =
ΦC

P
. (35.1)

Consumed power can be calculated by multiplying voltage U by electric current I �owing
through light source

P = UI. (35.2)

Luminous �ux Φ is the amount of energy going through surface in the unit of time.
By measuring the energy of light waves going through surface surrounding light source
we get total luminous �ux of light source ΦC . Measuring ΦC is not easy because light
sources have di�erent shapes and energy of radiation they emit depends on direction
(radiation is anisotropic). Special experimental methods are used to determine total
luminous �ux, such as photometric sphere or photometers mounted on special arm
that allows measurement in di�erent spacial con�gurations. Latter method allows the
creation of spacial map of light distribution. In this exercise we will use simpli�ed
method of measuring total luminous �ux based on the assumption that examined light
source is isotropic point source. This means that the size is negligibly small and energy
of emitted radiation is equal in all directions. This assumption is not true but later we
will show that this simpli�cation is justi�ed.

Determining total luminous �ux of isotropic point source based on
measurement of illuminance.

Figure 35.1. The radiation of the point light
source

Luminous intensity IS is a basic
photometric parameter. It's a ratio
of luminous �ux dΦ contained in in-
�nitely small solid angle to value of this
angle dω (Figure 35.1)

IS =
dΦ

dω
. (35.3)

The unit of luminous intensity is
the candela (cd). This unit is strictly
de�ned, it belongs to the SI system.
Name comes from latin (candela � can-
dle) and originally luminous intensity
of 1 cd corresponded to luminous inten-
sity of specially created candle. Today,
obviously, this de�nition is not precise
enough.
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When we are dealing with isotropic source of light we can write luminous intensity as
a ratio of total luminous �ux to value of entire sphere IS = ΦC/4π. After transformation
we get the formula for total luminous �ux

ΦC = 4πIS. (35.4)

The unit of luminous �ux is the lumen (lm) de�ned as luminous �ux of a light
produced by isotropic point source that emits one candela of luminous intensity over a
solid angle of one steradian (1 lm = 1 cd · 1 sr).

In our exercise we will determine ΦC using di�erent physical quantity � illuminance
E - using lux meter. Illuminance is the ratio of luminous �ux dΦ to area dS on which
light falls

E =
dΦ

dS
. (35.5)

The unit of illuminance is lux (1 lx = 1 lm/m2) Figure 1 shows point light source and
a part of surface dS being illuminated by �ux dΦ. If as dS we use total surface of a
sphere with radius r (S = 4πr2), then dΦ will be equal to total luminous �ux emitted
by source ΦC . Formula for illuminance will be

E =
ΦC

4πr2
. (35.6)

This equation shows that if we have isotropic point source measuring illuminance E
from the distance of r from light source will allow us to calculate total luminous �ux.

Can we treat bulb as point isotropic light source

Of course bulb is not a point source. It's proven, however that with a small ap-
proximation we can treat light sources as point sources if distance of measurement is at
least 5 times bigger than size of light source. If our measurement will be made from far
enough we can treat our light source as point source.

Isotropy is a more complicated problem. real sources more or less don't meet
this criteria. for example so-called matt bulbs sends light evenly in all directions
but in the direction of handle it's not emitted at all. Figure 35.2a shows so called
candlepower-distribution solid showing intensity of radiation depending on direction
from light bulb. Figure 35.2b shows illuminance depending on the angle (direction)
from light bulb. It's easy to notice that we can observe highest values of illuminance
for angles of 150◦ and 210◦, for the 0◦ angle value of illuminance is equal to zero.
Dotted line of �gure 35.2b shows average value of illuminance. Average value is close
to the value for 90◦. We can approximate that the measurement of illuminance in the
direction perpendicular to the axis of symmetry (90◦ angle) is equal to the average
value of illuminance. This approximation can be used only for selected light sources
and can't be used for professional measurements.
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Figure 35.2. Example of light distribution by light bulb a) candlepower-distribution solid, b)
illuminance as function of angle (direction) of emission. Dotted line shows average value.

Why is luminous e�ciency of light bulb low?

Construction and working principle of light bulb hadn't change much in the last 100
years. It's a glass bulb usually �lled with nitrogen, with tungsten wire inside (�lament).
As a result of �ow of electric current �lament is heated to about 2600 K. Every body
at a temperature higher than 0 K emits electromagnetic waves. Most objects that
surround us emit infrared light, invisible to human eye. Only after exceeding about
1000 K objects start so emit dark red light. Increasing the temperature causes emission
of more colours: yellow, green, blue. We can observe combination of those colours as
yellow-white colour. Still more than 95% of radiation is infrared. Luminous e�ciency
could be increased by increasing the temperature of the �lament. For example if the
temperature would be comparable to the temperature on the surface of the Sun (6000K)
more than 40 % of radiation would be visible. Unfortunately this temperature is too
high. Commonly used tungsten starts to rapidly evaporate in temperatures above 2600
K. In order to increase the temperature light bulbs started to be �lled with halides (for
example iodine, �uorine, bromine). Halides bond with atoms of evaporated tungsten,
then, when they are close to heated up �lament those compounds fall apart and tungsten
is again settled on �lament. This cycle is called halogen cycle and the bulb is called
halogen bulb. Thanks to this cycle temperature of the �lament in halogen bulb can
be increased to 3000 K which gives us increase of luminous e�ciency of about 30 %
compared to traditional light bulb.

In past few years LED lamps are becoming more popular. LED lamp is usually
a collection of light-emitting diodes covered in phosphor placed in casing designed for
light bulbs. Working principles of LED lamp is completely di�erent from light bulb, it's
not heated up to high temperatures. Diodes emit blue light which excites phosphor to
shine. Yellow-green light emitted by phosphor combined with blue light of diode gives
white light. In case of LED lamp, unlike light bulb, all emitted light is visible. Losses
are result of e�ciency of the device, which means that luminous e�ciency of LED lamps
is much higher compared to light bulb.
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Figure 35.3. Experimental system used to measure luminous e�cacy of selected light sources

Measuring system

Measuring system is designed to measure luminous e�ciency of 3 light sources: LED
lamp, halogen bulb and traditional light bulb (�lled with nitrogen). Additionally it can
measure luminous e�ciency as a function of power consumption by sources. Figure
35.3 shows experimental system. Light sources are in box PZ which can be moved
perpendicularly to optic bench. Light detector connected to lux meter in located on
scaled bench which allows measurements of illuminance depending on the distance of
light source. Autotransformer ATr is used to power the light sources. Light sources,
voltmeter, ammeter and autotransformer are connected through connection panel. On
this panel switches P1 and P2 are located, those switches are used to turn on selected
light source. Fig 35.4 shows scheme of electric circuit.

Measuring luminous e�ciency η of selected sources

Figure 35.4. Electric scheme of power system
and power measurement

In order to measure luminous e�-
ciency of a light source box PZ should
be moved in a way that light source
is in front of light detector. Position
�closest to yourself� means LED lamp
is measured, middle position (box
indicator on bench marker) means
halogen bulb is measured, and position
�farthest from yourself� is traditional
light bulb. After turning selected
source on values of voltage U and



6. Optics 151

current I should be measured. After that measurements of illuminance E depending
on distance r should be made. In order to calculate total luminous �ux ΦC formula
(35.6) should be used. Using this substitutions: y = E, x = 1/r2 and a = ΦC/4π, we
get y = ax + b type formula. This is linear function where a is slope. Creating chart
of illuminance as a function of reversed squared distance: E = f(1/r2) should give
straight line. Applying the method of linear regression to this results can give the value
of slope a, and after that total luminous �ux ΦC = 4πa. Using measurement of voltage
U and current I we can calculate power consumption P = UI. Finally luminous
e�ciency can be calculated using formula (35.1).

Measuring luminous e�ciency as a function of power consumption

In order to calculate how luminous e�ciency depend on consumed power light de-
tector should be placed in constant distance r in front of bulb of interest. After that,
perform measurements of illuminance E while changing Voltage using autotransformer.
Using formulas (35.1), (35.2), and (35.6) we can create formula that will allow to calcu-
late luminous e�ciency of point isotropic source.

η =
4πr2E

UI
. (35.7)

Power should be calculated using formula (35.2).

Course of exercise

A. Determining luminous e�ciency η of light sources

1. Move PZ box to position �closest to yourself� so LED lamp is in front of lux meter
detector.

2. Move switch P1 to position 1. Turn on voltmeter ammeter and autotransformer,
next set voltage to 230 V. Write down values of voltage and current.

3. Make 10 to 12 measurements of illuminance depending on distance in range from 25
to 90 cm. Because dependence is not linear at �rst change distance by 2 cm, later
by 5 cm, in the end by 10 to 15 cm.

4. Repeat measurements for halogen bulb (switches P1 and P2 in positions 2 and 3)
and traditional bulb (switches P1 and P2 in positions 2 and 4)

5. Using those results plot on one chart dependences of illuminances from distances
from light sources E = f(1/r2) for examined sources.

6. Using method of linear regression calculate slopes of generated lines a and their
errors, afterwards total luminous �ux ΦC = 4πa and measurement errors.

7. Using received results and formulas (35.1) and (35.2) calculate luminous e�ciency
of examined sources and errors.

8. Compare results and write down �ndings.

B. Calculating luminous e�ciency as a function of power consumption
η = f(P ).

1. Set up traditional bulb 35 cm in front of lux meter detector. After that turn on bulb
circuit and using autotransformer set voltage to 230V.
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2. Make 10 measurements of illuminance while changing voltage by 10V. Each time
note down values of voltage and current.

3. Using formulas (35.2) and (35.7) calculate each value of power and luminous e�-
ciency.

4. Repeat measurements for halogen bulb.
5. On one chart plot values of luminous e�ciency depending on consumed power η =

f(P ).
6. Write down the �nal conclusions

Keywords:

• de�nitions of photometric quantities: luminous �ux, luminous intensity (intensity),
luminance, lighting,

• photometric units: candela, lumen, rivet, lux, light output,
• Lambert's law, photometer, light detector, lux meter.

36. Determination of the radius of curvature of the lens using
Newton rings

Newton's rings

Circular interference rings, called Newton's rings, are created when a parallel beam
of light strikes a system consisting of an exactly �at glass plate and a �at-convex
lens lying on it (Fig. 36.1). Between the lens and the plate there is an air
layer with a thickness d increasing with the distance from the axis of the sys-
tem. The radius of curvature of the lens is several tens of centimeters and is much
larger than the radii of Newton's rings; they are on the order of one millimeter.

Figure 36.1. System for the production of New-
ton's rings

The interference image results from
the superimposition of rays re�ected
from the lower surface of the lens and
the upper surface of the plate. Figure
36.1 shows the course of an example of
a selected radius. Part of the beam in-
cident vertically from above is re�ected
from the top surface of the plate (point
B in the �gure) and runs back upwards.
The second part re�ects o� the inner
surface of the (spherical) lens (point A
in the �gure) and also runs up to the
microscope objective.

It should be noted that the radius
of curvature of the lens in the drawing
is much smaller than it actually is, to
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enable all details relevant to the phe-
nomenon to be marked. In the drawing scale, the surface of the lens should be almost
parallel to the surface of the plate, and the re�ected rays - almost vertical.

The di�erence between the geometric paths of both radii is 2d. The thickness of the
slit d changes with the distance from the center point, so we can expect that for some
thicknesses the ampli�cation condition will be met and the ray incident there will be
re�ected as bright. Rays incident in other places will be dimmed after re�ection. To
calculate the optical paths, we assume that the refractive index of air is equal to unity,
and also take into account the fact that re�ection from a denser medium is accompanied
by a phase change of 180◦, which corresponds to an additional λ/2 road change. Given
the above, we can write the condition for the formation of a bright interference ring:

2d+
λ

2
= mλ (m = 1, 2, 3...), (36.1)

where m is called the ring row; otherwise it is the number of the ring from the center.
Based on Fig. 36.1, we can express the thickness of the air layer through the radius of
the interference ring a:

d = R−
√
R2 − a2 = R−R

√
1−

( a
R

)2
, (36.2)

remembering that a/R << 1, we can use series expansion of the square root expression
and we get the form:

d = R−R

[
1− 1

2

( a
R

)2
+ ...

]
≈ a2

R
. (36.3)

After combining the last equation with the equation (36.1) we get:

a =

√
(m− 1

2
)λR (m = 1, 2, 3...). (36.4)

The obtained equation determines the rays of bright interference fringes.
At the point of contact between the lens and the plate, a very thin air layer is

formed, with a thickness many times smaller than the wavelength. The optical path
di�erence arising between the rays at this point is due to the loss of only half the
wavelength on re�ection from the plate. As a result it is λ/2; in the middle of the
interference image we observe a dark �eld. If the system is illuminated with white light,
colored wide rings are formed which may overlap at the higher rows.

Measurements and calculations

In order to determine the radii of Newton's rings, we use a microscope adapted for
this purpose. Place the plate with the lens in the microscope's �eld of view on a table
that can be moved horizontally in two directions using micrometric screws. To enable
simultaneous illumination of the system and observation of the image, on the optical
axis of the microscope M (Fig. 36.2) we place a translucent plate P inclined at an angle
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of 45◦ to the direction of the rays. The plate re�ects some of the rays from the source S
and directs them to the system, where they are re�ected and interfered with, and then
pass through the plate P to the microscope objective.

Figure 36.2. Newton's ring
observation system: M -
microscope, P - translucent

plate.

The microscope eyepiece is equipped with a cross
made of spider threads, thanks to which we can precisely
set the selected fragment of the image in the �eld of view.
By moving the table along the line through the center
of the image in the X direction only, you can �nd the
positions of the bright rings on the right of ar, and on
the left of al from the center. The radius of the fringe of
the m order is the half of the diameter:

am =
ar − al

2
. (36.5)

If the relationship (36.4) is transformed into the form

a2m = λR(m− 1

2
), (36.6)

it can be seen that it will be useful to plot in the coordi-
nates y = a2, x = (m− 1/2), because the plot will then
be a straight line. The slope coe�cient is R. The value
of this coe�cient is obtained from linear regression; let
us denote it areg, ( not to be confused with the radius of the fringe!). The equation gives
the �nal value of the radius of curvature of the lens:

R =
areg
λ

. (36.7)

The lens's radius of curvature is determined by taking the wavelength λ = 589.6 nm.

Measurements:

1. Use the stage feed screws to measure the position of the next light rings to the right
of the center. Do the same for the left edge of the rings. Take measurements for all
measurable rings (it seems feasible to measure rings from m=3 to m=20).

2. Note the accuracy of the measuring device

Report:

1. Calculate the radii of Newton's rings (r [mm]) of subsequent rows (m).
2. Calculate the square of the radii of Newton's rings and the corresponding expression

(m− 1/2).
3. Plot r2 = f(m− 1/2).
4. Using the linear regression method, calculate the slope coe�cient areg and its un-

certainty ∆areg. If some of the measurement points deviate from the straight line,
these points should be thrown. The most likely cause of non-linearity is deformation
of the lens near the point of contact with the plate, due to excessive pressure. The
result is an enlargement of the radii of the low order rings.
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5. Determine the radius of curvature of the lens R =
areg
λ

(wavelength of light used in

the system: λ = 589.6 nm, NOTE: [areg]=[mm2] so change λ to [mm].).
6. Determine the measurement uncertainty of this radius (∆R).
7. Present the �nal results of the experiment (properly rounded, unit [R]=[mm]).
8. Write down the �nal conclusions

Keywords:

• wave nature of light, electromagnetic waves, wavelength
• interference, blanking and ampli�cation conditions, wave coherence
• phase change after re�ection, optical path
• system for making Newton rings
• the condition for the formation of a bright ring, the band row and the di�erence of
paths, the brightness of zero order



A. List of Exercises

MECHANICS

Ex.101 Determination of the speed of sound in the air by the phase shift method.
Ex.102 Determination of gravitational acceleration using a reversible and mathematical pen-

dulum.
Ex.103 Determination of the linear expansion coe�cient of solids.
Ex.104 Investigation of the moment of inertia
Ex.105 Determination of Young's modulus by the de�ection method
Ex.106 Investigation of the uniformly accelerated motion using a computer measuring set
Ex.107 Determination of the dependence of the viscosity coe�cient on temperature.
Ex.108 Determination of the sti�ness modulus using the dynamic method.

ELECTROMAGNETISM

Ex.201 Determining the capacitance of a capacitor by means of relaxation vibrations
Ex.202 Investigation of the transformer
Ex.203 Determining the dependence of conductivity on temperature for semiconductors and

conductors
Ex.204 Investigation of the in�uence of the magnetic �eld on a conductor with current
Ex.205 Determination of the Planck constant and output work based on photoelectric e�ect
Ex.206 Determination of ferromagnetic hysteresis loop by means of a hallotron
Ex.207 Calibration of the thermocouple
Ex.208 Measurement of the e/m ratio by means of deviations in the magnetic �eld

OPTICS

Ex.301 Determination of the refractive index of apparent and real thickness of the plates
Ex.302 Determination of focal length lenses from a lens pattern and the Bessel method
Ex.303 Determination of the di�raction grating constant
Ex.304 Optical emission spectra study
Ex.305 Determination of the refractive index of a liquid using an Abbe refractometer
Ex.306 Investigation of the polarization plane torsion caused by solutions using a polarimeter
Ex.307 Determination of the light e�ciency of selected light sources
Ex.308 Determination of the radius of curvature of the lens using Newton rings



B. List of Physical constants

Table B.1. Physical constants

Name Symbol Value

Speed of light in vacuum c 299 792 458(exact) m/s
Vacuum magnetic permeability µ0 1.256 637 062 12(19) · 10−6 N A−2

Vacuum electric permittivity ε0 8.854 187 8128(13) · 10−12 F m−1

Elementary charge e 1.602 176 634(exact) · 10−19 C
Planck constant h 6.626 070 15(exact) · 10−34 J Hz−1

Avogadro constant NA 6.022 140 76(exact) · 1023 mol−1

Electron mass me 9.109 383 7015(28) · 10−31 kg
Proton mass mp 1.672 621 923 69(51) · 10−27 kg

Electron charge to mass quotient
e

me
1.758 820 010 76(53) · 1011 C kg−1

Faraday constant F 96 485.332 12...(exact) C mol−1

Rydberg constant R∞ 10 973 731.568 160(21) m−1

Molar gas constant R 8.314 462 618...(exact) J mol−1 K−1

Boltzmann constant kB 1.380 649(exact) · 10−23 J K−1

Stefan-Boltzmann constant σ 5.670 374 419... · 10−8 W m−2 K−4

Newtonian constant of gravitation G 6.674 30(15) · 10−11 m3 kg−1 s−2

Standard acceleration of gravity g 9.806 65 m s−2



C. Tables

Table C.1. Some mechanical properties of solids at 20◦C

Name of Density Young's Sti�ness Speed of The lin. expansion
the solid modulus modulus sound coe�cient α

103 kg m−3 1010 N m−2 1010 N m−2 rd−1 103 m s−1 10−6 K−1

Bismuth 9.80 3.1 1.2 � 13.45
Tin 7.30 3.9-5.4 1.8 2.500 26.92
Zinc 7.04-7.19 3.4-13 2.6-4.6 3.700 13.45
Aluminum 2.70 6.2-7.3 2.2-2.7 5.104 25.5
Cadmium 8.66 2.3 2.307 �
Constantan 8.90 17 6.1 � 17.0
Fused Quartz � 5.9 � � 8-13
Copper 8.89 7.9-13 4.0-4.8 3.560 16.0-17.8
Brass (30% Zn) 8.44 10.3 4.2 3.500 18.9
Lead 11.34 1.4-1.7 0.64 1.277 29.4
Silver 10.49 6.9-7.9 2.4-2.9 2.610 18.8
Glass 2.6-5.9 4.9-7.9 1.7-3.0 5-6 9.0
Steel 7.83 21.5 8.15 4.990 6-13
Tungsten 18.6-19.3 35.4 13.2 � 4.5
Iron clean 7.85 � � 5.130 �
Wrought iron 7.8-7.9 21.3 8.1 � 11.4
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Table C.2. The thermal properties of solids at 20◦C

Name of Speci�c Melting Boiling Thermal
the solid heat temperature point conductivity

103 Jkg−1m−1 ◦C ◦C Jm−1s−1K−1

Bismuth 0.123 271.3 1560 �
Tin 0.226 231.9 2260 �
Zinc 0.384 419.0 907 64.8
Aluminum 0.896 569.7 2057 226
Cadmium 0.231 320.9 767 �
Constantan 0.41 1290 � �
Fused Quartz 1710 � 12-67
Copper 0.385 1083 2336 384
Brass 0.388 910 � 85-109
Lead 0.128 327.4 1620 34.7
Silver 0.234 960.8 1950 825
Glass 0.832 800-1400 � 0.8-1.1
Steel � 1400 � 48
Tungsten 0.144 3370 5900 199
Iron clean � 1535 3000 67.2

Table C.3. The properties of liquids at 20◦C

Name of Density Viscosity Speci�c Melting Boiling
liquid coe�cient heat temperature point

103 kg m−3 10−3 kgm−1s−1 103 Jkg−1m−1 ◦C ◦C

Acetone 0.792 0.32 1.96 -95 57
Ethanol 0.791 1.2 2.38 -117.3 78.3
Methyl alcohol 0.788 0.6 2.51 -97.8 64.7
Benzene 0.878 0.65 1.72 5.48 80.2
Chloroform 1.480 0.56 0.98 -63.5 61.2
Ethyl ether 0.714 0.23 2.3 -117.6 34.6
Glycerine 1.260 1490 2.43 -17 291
Blood (37◦C) 1.060 4 � � �
Castor oil 0.965 986 � � �
olive oil 0.910 84 � 2-6 300
Mercury 13.550 1.56 0.136 -38.87 356.9
Water 0.998 1 4.186 0.0 100.0
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Table C.4. Speci�c resistance (in 0◦C) and temperature coe�cient of metals and alloys

Name of Speci�c Temperature Name of Speci�c Temperature
material resistance coe�cient material resistance coe�cient

10−8 Ωm 10−3 K−1 10−8 Ωm 10−3 K−1

Zinc 5.65 4.17 Newly Silver 30 0.35
Aluminum 2.5 4.6 Lead 19.2 4.28
Constantan 45 -0.05 Platinum 9.81 3.96
Manganin 43 0.02 Mercury 94.07 0.99
Copper 1.55 4.33 Silver 1.49 4.3
Brass 6.3 1.53 Tungsten 4.89 5.1
Nickel 6.14 6.92 Iron 8.6 6.51
Nickeline 43 0.23

Table C.5. Dependence of thermoelectric force (ε) iron-constantine thermocouple on tempera-
ture di�erence (relative to 0◦C)

Temperature ε Temperature ε Temperature ε
◦C mV ◦C mV ◦C mV

0 0.00 350 19.32 700 39.30
50 2.66 400 22.07 750 42.48
100 5.40 450 24.82 800 45.72
150 8.19 500 27.58 850 49.00
200 10.99 550 30.39 900 52.29
250 13.97 600 33.27 950 55.25
300 16.56 650 36.24 1000 58.22

Table C.6. Dependence of thermoelectric force (ε) copper-constantine thermocouple on tem-
perature di�erence (relative to 0◦C)

Temperature ε
di�erence mV

◦C -200 -100 0 100 200 300

0 -5.54 -3.35 0.00 4.28 9.29 14.86
10 -5.38 -3.06 0.40 4.70 9.82 15.44
20 -5.20 -2.77 0.80 5.23 10.44 16.03
30 -5.02 -2.46 1.20 5.71 10.90 16.62
40 -4.82 -2.14 1.67 6.20 11.46 17.22
50 -4.60 -1.85 2.03 6.70 12.01 17.82
60 -4.38 -1.47 2.47 7.21 12.57 18.42
70 -4.14 -1.11 2.91 7.72 13.14 19.02
80 -3.89 -0.75 3.36 8.23 13.71 19.63
90 -3.62 -0.38 3.81 8.76 14.28 �
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Table C.7. Dependence of thermoelectric force (ε) chromium:nickel-nickel thermocouple on
temperature di�erence

Temperature ε
di�erence mV

◦C 0 20 40 60 80

0 0.00 0.80 1.61 2.43 3.26
100 4.10 4.92 5.73 6.53 7.33
200 8.13 8.93 9.74 10.56 11.38
300 12.21 13.04 13.87 14.71 15.55
400 16.39 17.24 18.08 18.93 19.78
500 20.64 21.49 22.34 23.30 24.05
600 24.90 25.75 26.6 27.45 28.29
700 29.14 29.98 30.82 31.65 32.48
800 33.31 34.12 34.94 35.75 35.56
900 37.36 38.16 38.96 39.75 40.53
1000 41.31 42.08 42.86 43.62 44.38
1100 45.14 45.89 46.64 47.38 48.12
1200 48.85 49.57 50.29 51.00 51.71

Table C.8. The properties of ferromagnetic and ferrimagnetic bodies (µ0 - initial magnetic
permeability, νmax maximum magnetic permeability, HC - coercion, TC - Curie temperature)

Material µ0 µmax H0 TC

Am−1 K

78 Permalloy (78.5% Ni) 8000 100000 4 473
CoFe2O4 1 1 52000 768
Ferrocobalt (35% Co) 1000 27000 16-60 1253
Cobalt (99% Co) 70 250 800 1393
MnBi (20% Mn, 80% Bi) � � 260000 633
Nickel (99% Ni) 110 600 55 631
Silicon steel (4% Si) 500 7000 40 963
Mild steel (0.2% C) 120 2000 143 1043
Supermalloy (5% Mo, 79% Ni) 100000 1000000 0.16 673
Iron oxide (Fe3O4) 70 70 � 858
Pure iron (99.95% Fe) 10000 100000 4 1053
Technical irons (99.8% Fe) 150 5000 80 1053
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Table C.9. Refractive index (n) relative to air (at 15 ◦C for the yellow sodium line)

Material n Material n

Acetone 1.360 Fused Quartz 1.458
Ethanol 1.360 Para�n oil 1.440
Methyl alcohol 1.330 Ordinary glass 1.518
Benzene 1.504 Crown glass 1.525
Amber 1.546 Flint glass 1.569
Carbon tetroxide 1.464 water 1.333
Glycerine 1.470 Gelatine 1.530
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Table C.10. The wavelength of the spectral lines of some elements
(vs - very strong, s - strong, m - medium, w - weak, vw - very weak)

λ (nm) / Intens. λ (nm) / Intens. λ (nm) / Intens. λ (nm) / Intens.

H - hydrogen O - oxygen Kd - cadmium Na - sodium
410.2 vw 394.7 vw 467.8 s 589.6 m
434.0 w 436.8 vw 480.0 w 589.0 m
486.1 m 543.6 vw 508.5 vw Zn - zinc
656.3 vs 557.7 vw 515.5 s 463.0 w
He - helium 595.9 vw 643.8 s 468.0 w

388.8 m 610.6 vw 738.4 vw 472.2 w
438.8 vw 615.6 m 783.5 vw 481.2 w
447.1 m 645.6 w Cu - cooper 518.2 w
471.3 w 700.2 w 402.3 vw 636.2 w
492.2 w 725.4 w 406.3 vw Kr - krypton
501.6 s Ne - neon 427.5 vw 427.4 s
504.8 vw 534.1 vw 437.8 vw 432.0 s
587.6 vs 540.1 vw 458.7 vw 437.6 s
667.8 vs 576.4 vw 515.3 w 445.4 m
706.5 vs 585.2 vs 521.8 vw 450.2 m
728.1 m 594.5 m 570.0 vw 556.2 m
Li - lithium 603.0 w 578.2 vw 557.0 vs

610.4 s 609.6 s Ar - argon 587.1 vs
670.8 m 614.3 s 420.1 w 645.6 vw
N - nitrogen 621.7 w 425.9 w Hg - mercury

410.0 vw 626.6 m 641.6 vw 365.0 s
484.7 vw 633.4 m 667.7 w 404.7 m
491.5 vw 640.2 vs 696.5 vw 407.8 vw
528.1 vw 650.7 s 727.3 w 435.8 vs
575.2 w 659.9 m 750.4 vs 491.6 vw
583.0 w 667.8 m 751.4 vs 512.8 vw
600.0 vw 671.7 w 763.5 m 546.1 vs
642.1 vw 692.9 m 794.8 vw 577.0 s
700.2 v 702.4 m 800.6 s 579.1 s
725.4 v 717.4 vw 811.5 w 623.4 vw
746.8 m 724.5 w 840.8 w 671.6 vw

K -potasium 912.3 vw 690.7 vw
393.4 w 708.2 vw
396.8 w 772.9 vw
645.7 vs

(for more spectra lines visit NIST Atomic Spectra Database Lines Form https://physics.

nist.gov/PhysRefData/ASD/lines_form.html [10] or click to use Spektru± program)

https://physics.nist.gov/PhysRefData/ASD/lines_form.html
https://physics.nist.gov/PhysRefData/ASD/lines_form.html
https://phys.put.poznan.pl/przydatne-programy


D. REGULATIONS of the Physics
Laboratory

Regulations of the Physics Laboratory
at the Pozna« University of Technology

I. GENERAL PROVISIONS/REGULATIONS

1. The aim of the classes at the Physics Laboratory is to experimentally check basic
physical laws, to familiarize yourself with instruments, measuring technique and
analysis of measurement results. The above goals are achieved by performing exper-
iments.

2. Depending on the �eld of study, 2 or 3 hours (90 or 135 minutes) are allocated to
perform one exercise (experiment).

3. Students perform exercises in the Physics Laboratory in teams of maximum two
people. In special cases, a larger number of people can form a team.

4. Each experience has its own position in the workshop, where most of the necessary
equipment is located. If necessary, before starting the exercise, rent in the technical
room (room 221A) small measuring equipment, such as: calipers, micrometer screws,
measures, ruler, stoppers, etc.

5. Electrical devices can be connected to a power source and switched o� after the
exercise, only after obtaining the consent of the lecturer and in his presence.

6. The student bears full material responsibility for damage to the devices caused by
the student.

7. During classes you must not leave the station without the consent of the teacher
conducting the exercises.

II. PREPARATION AND EXECUTION OF THE EXPERIMENT

1. You should be prepared for each exercise, i.e.
a) master the necessary theoretical knowledge about experience,
b) get acquainted with the course of the exercise and the principle of operation of

the instruments used. NOTE: The appropriate topic of the exercise should be
selected based on the recommendations given on the information board or on the
website of the Physics Laboratory.

2. The doubts arising during the experiment are resolved by the teacher conducting the
classes. He also checks the student's preparation for classes.

3. During the experiments, enter in the report:
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a) measurement results included in the tables (direct readings) with appropriate
units,

b) uncertainty of measured quantities (reading accuracy).
4. Before leaving the workshop, written con�rmation must be obtained by the teacher

conducting the exercises of the results in the report.
5. The instrument set can only be dismantled after the results have been con�rmed. We

disconnect the electrical circuits by switching o� the power source. After completing
the exercise, you should organize your position.

6. After taking the measurements, the results should be developed, i.e.
a) using the measurement results, calculate the searched physical quantities and

calculate the units,
b) calculate the measurement uncertainties of the determined quantities and compile

the results,
c) prepare charts in accordance with the rules contained in the script (S. Szuba -

Physics laboratory exercises [1]),
d) present conclusions regarding the given experiment and, if possible, compare the

obtained results with the literature data.
e) NOTE: Although students do exercises in teams, they are assessed individually.

III. COMPLETION OF CLASSES AND SEMESTER CREDIT

1. Conditions for passing the exercise are as follows:
a) positive assessment of theoretical knowledge,
b) correct measurements,
c) correct processing of measurement results,
d) submitting the report before proceeding to the next exercise.

2. The above factors in�uence the �nal assessment of the exercise.
3. Completion of laboratory exercises takes place in the last week of classes after com-

pleting the exercise and giving a shortened (as required by the teacher) report.
4. A prerequisite for passing the laboratory classes is passing a positive grade (minimum

satisfactory) of at least 85% of all classes provided in a given semester.
5. Unjusti�ed absences are tantamount to failing the exercise (unsatisfactory) and lower

the �nal grade.
6. Absences due to reasons beyond the control of the student should be excused for the

teacher during the �rst class after the absence. Otherwise, your absence will not be
excused.

7. In the case of an excused absence, the student has the right to do the exercise
on the date agreed with the teacher, when the given measuring position is free.
Completing the completed exercise requires meeting all the requirements listed in
section III.1, however, the number of completed exercises cannot be greater than
1/3 of the planned exercises in the semester.

8. In the event that a student has completed at least 85% of all exercises and has not
received a credit within the prescribed period, he / she has the right to proceed with
a corrective and commission credit in accordance with the study regulations.



E. REGULATIONS - order and OHS

Order regulations and OHS regulations in force in the Physics Laboratory

OHS - "Occupational Health and Safety"

I. GENERAL PROVISIONS/REGULATIONS

1. The order regulations of the Physical Laboratory of the Faculty of Technical Physics
of the Pozna« University of Technology set out the basic formal regulations, rules of
conduct and OHS requirements when using the laboratory resources of the Faculty
of Technical Physics in the �eld of conduct on the premises and in relation to the
equipment of the Laboratory.

2. The Laboratory operates according to the rules set by its supervisor and approved
by the Dean of the Faculty.

3. All persons staying at the Laboratory are obliged to comply with the provisions
contained in these regulations, general health and safety regulations, �re protection
and not to disturb the order in the rooms.

4. It is forbidden to enter the rooms of the Workwear in outerwear, bring large bags,
backpacks, suitcases. Outerwear (especially wet), large luggage, umbrellas, etc.
should be left in the cloakroom.

5. It is forbidden to bring and consume meals and drinks (in any form) in the Labora-
tory.

II. SPECIFIC PROVISIONS

Students participating in the laboratory exercises of the Physics Laboratory are ex-
posed to electric shock and harmful e�ects of laser and microwave radiation. Therefore,
students are required to exercise extreme caution, and in particular should:

1. Familiarize yourself with the location of the main switch and other switches enabling
immediate disconnection of work stations from power sources.

2. Organize the workplace before taking measurements and observe order and cleanli-
ness.

3. Familiarize yourself with the speci�cations of the equipment and devices that will
be used to make measurements.

4. Connect measuring systems to the power source only with the consent of the teacher
conducting the class.

5. Be ready to immediately turn o� the power supply to the systems during measure-
ments.
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6. Be careful when changing the ranges of measuring instruments - do not disconnect
power supply in the tested circuit when changing the measuring range.

7. Make any con�guration changes to the electrical connections in the tested measuring
system only after disconnecting the power supply and under the supervision of the
instructor.

8. Keep in mind the capacitors installed in the systems and the electrical potential
accumulated in them, which may pose a risk of electric shock even after disconnecting
the voltage supplying the tested system.

9. Consider the impact of other workplaces on safety when making measurements at
your workstation.

10. Perform exercises only at the position indicated by the teacher. Do not use equipment
other than the one assigned to perform the exercise.

11. Avoid arbitrary switching to other test stands during measurements.
12. When moving around the workshop, be extremely careful not to damage adjacent

workstations.
13. In the event of an electric shock, disconnect the injured person and the station from

the power source and proceed to rescue operations described in a separate "�rst aid
instruction".

14. Absolutely protect your eyes against laser radiation and make sure that the re�ected
laser radiation does not hit the eyes of an outsider.

15. Take special care and do not approach closer than 20 cm from the outlet of the
microwave transmitter (klystron).

16. Supervise and control the apparatus throughout the entire exercise.
17. Inform the teacher conducting the exercises about an incident threatening health and

life. Students in threatened rooms not designated for rescue operations are obliged
to leave them without delay.

III. Additional regulations related to safety at the Physics Laboratoryduring the pandemic (COVID-19)

1. Entering the laboratory room is a simultaneous declaration of good health.
2. Students and academic teachers are required to disinfect their hands both before and

immediately after conducting classes in the 1st Physical Laboratory.
3. During laboratory classes, people in the room should:

a) wear protective masks or visors,
b) keep social distance as much as possible,
c) avoid touching your mouth, nose and eyes.

4. Students are required to minimize movement around the room and limit personal
items on work tables to the necessary minimum.

5. Laboratory exercises should end 15 minutes before the scheduled end of classes in
order to disinfect the tops of laboratory tables and ventilate the room.

6. The laboratory leader decides on the scope of the course of the abbreviated form of
the exercise.
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7. At the request of the teacher, students can send reports from the exercises in elec-
tronic form, and then review them by the teachers in the same form. In this situation,
the reports should be archived in electronic form for a period of 1 year



F. Template of Report

Ex. No Date Faculty Field of study Lab. Group
204 DD.MM.YYYY Electrical Eng. AC&R 2

Academic teacher Preparation Execution Final Grade

Title: Investigation of the in�uence of a magnetic �eld on a conductor

with current

1. Introduction
2. Results of Measurements
3. Calculations
4. Estimation of errors
5. Plots/graphs
6. Final results

(including correct rounding up values)
for example e/me = (1.758± 0.005)× 1011 [C kg−1]
or e/me = 1.758(5)× 1011 [C kg−1]

7. Summary/Conclusions



G. Templates of plots (made in Phyton (x.y)
and mathplotlib)

Figure G.1. Ex.101. Plot 1. Theoretical calculated the speed of sound as a function of tem-
perature. Red lines shows the theoretical values for temp.=20 ◦C.
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Figure G.2. Ex.203. Plot 1. An example of plot R = f(Temp.) for both conductor and
semiconductor. See the value of EA is determined.

Figure G.3. Ex.203. Plot 2. An example of plot ln(1/R) = F (1/Temp.), see the value of EA

is determined.
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Figure G.4. Ex.206. Plot 1. An example of plot B = F (H) the hysteresis loop for ferromag-
netic.



H. Speci�cations of measuring instruments

Multimeter MASTECH MY70/74

Table H.1. Multimeter MASTECH MY70/74 - VOLTAGE MEASUREMENT, DC

measurement range resolution measurement accuracy

200 mV 0,1 mV 0,5% read + 2 digits
2 V 1 mV 0,5% reading + 2 digits
20 V 10 mV 0,5% reading + 2 digits
200 V 100 mV 0,5% reading + 2 digits
600 V 1 V 0,8% reading + 2 digits

Table H.2. Multimeter MASTECH MY70/74 - VOLTAGE MEASUREMENT, AC

measurement range resolution measurement accuracy

200 mV 0,1 mV 1,2% reading + 3 digits
2 V 1 mV 0,8% reading + 3 digits
20 V 10 mV 0,8% reading + 3 digits
200 V 100 mV 0,8% reading + 3 digits
600 V 1 V 1,2% reading + 3 digits

Table H.3. Multimeter MASTECH MY70/74 - RESISTANCE MEASUREMENT

measurement range resolution measurement accuracy

200 Ω 0,1 Ω 0,8% reading + 3 digits
2 kΩ 1 Ω 0,8% reading + 2 digits
20 kΩ 10 Ω 0,8% reading + 2 digits
200 kΩ 100 Ω 0,8% reading + 2 digits
2 MΩ 1 kΩ 0,8% reading + 2 digits
20 MΩ 10 kΩ 1,0% reading + 2 digits
200 MΩ 100k Ω 6,0% reading + 10 digits
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Table H.4. Multimeter MASTECH MY70/74 - MEASUREMENT OF CURRENT, DC

measurement range resolution measurement accuracy

20 µA 0,01 µA 2,0% reading + 5 digits
200 µA 0,1 µA 0,8% reading + 1 digit
2 mA 1 µA 0,8% reading + 1 digit
20 mA 10 µA 0,8% reading + 1 digit
200 mA 0,1 mA 1,5% reading + 1 digit
10 A 10 mA 2,0% reading + 5 digits

Table H.5. Multimeter MASTECH MY70/74 - MEASUREMENT OF CURRENT, AC

measurement range resolution measurement accuracy

20 µA 0,01 µA 2,0% reading + 5 digits
200 µA 0,1 µA 1,0% reading + 5 digits
2 mA 1 µA 1,0% reading + 5 digits
20 mA 10 µA 1,0% reading + 5 digits
200 mA 0,1 mA 1,8% reading + 5 digits
10 A 10 mA 3,0% reading + 7 digits
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